Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows our ancestors survived ’Snowball Earth’

07.06.2006


It has been 2.3 billion years since Earth’s atmosphere became infused with enough oxygen to support life as we know it. About the same time, the planet became encased in ice that some scientists speculate was more than a half-mile deep. That raises questions about whether complex life could have existed before "Snowball Earth" and survived, or if it first evolved when the snowball began to melt.



New research shows organisms called eukaryotes -- organisms of one or more complex cells that engage in sexual reproduction and are ancestors of the animal and plant species present today -- existed 50 million to 100 million years before that ice age and somehow did survive. The work also shows that the cyanobacteria, or blue-green bacteria, that put the oxygen in the atmosphere in the first place, apparently were pumping out oxygen for millions of years before that, and also survived Earth’s glaciation.

The findings call into question the direst models of just how deep the deep freeze was, said University of Washington astrobiologist Roger Buick, a professor of Earth and space sciences. While the ice likely was widespread, it probably was not consistently as thick as a half-mile, he said.


"That kind of ice coverage chokes off photosynthesis, so there’s no food for anything, particularly eukaryotes. They just couldn’t survive," he said. "But this research shows they did survive."

Buick and colleagues studied droplets of oil encased in rock crystals dating from 2.4 billion years ago, recovered from the Elliot Lake area near Sault Ste. Marie, Ontario, Canada. The oil, essentially chemicals left from the breakdown of organic matter, contained biomarkers, or molecular fossils, that can be structurally identified as having come from specific types of life.

"It’s the same thing as looking at dinosaur fossils, except these fossils are at the molecular scale. You are looking at the molecular skeletons of carbon molecules, such as cholesterol, held within oil droplets," he said.

This is not the first time biomarkers indicating that eukaryotes and cyanobacteria were alive before "Snowball Earth" have been found in ancient rocks. A paper reaching the same conclusion was hailed as one of the top science breakthroughs of 1999. Buick did some of the research for that paper and was a co-author. But almost from its publication, detractors have said what was seen were not really ancient biomarkers but rather some kind of contamination that got into the samples being studied, possibly from oil flowing through shale rocks at a much later time or modern fossil fuel pollution.

"The contamination idea has always been nattered about in corridors or talked about in meetings, but never put down in print," Buick said. "What this new paper does is confirm these as being very, very old biomarkers."

The lead author of the paper, published in the June edition of Geology, is Adriana Dutkiewicz of the University of Sydney in Australia, for whom Buick served as a postdoctoral mentor. Other authors are Herbert Volk and Simon George of the Commonwealth Scientific and Industrial Research Organization in Australia and John Ridley of Colorado State University.

The researchers examined rock samples obtained from an outcrop near Elliot Lake, which then were fragmented into pieces less than one-tenth of an inch in diameter. The particles were cleaned thoroughly and checked for contamination throughout the process. The crystal fragments contained numerous minuscule pockets of fluid mostly consisting of water but also containing small amounts of oil, usually in a thin film around a bubble of water vapor. The oil resulted from decaying organic matter, probably of marine origin.

"A drop of oil is a treasure trove. It is highly concentrated molecular fossils," Buick said.

The biomarkers contained in the oil indicate that both eukaryotes and cyanobacteria first appeared before the planetary glaciation, rather than evolving at the same time or later, he said. The samples also suggest that oxygen was being produced long before the atmosphere became oxygenated, probably oxidizing metals such as iron in the Earth’s crust and ocean before the atmosphere began filling with oxygen.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>