Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows our ancestors survived ’Snowball Earth’

07.06.2006


It has been 2.3 billion years since Earth’s atmosphere became infused with enough oxygen to support life as we know it. About the same time, the planet became encased in ice that some scientists speculate was more than a half-mile deep. That raises questions about whether complex life could have existed before "Snowball Earth" and survived, or if it first evolved when the snowball began to melt.



New research shows organisms called eukaryotes -- organisms of one or more complex cells that engage in sexual reproduction and are ancestors of the animal and plant species present today -- existed 50 million to 100 million years before that ice age and somehow did survive. The work also shows that the cyanobacteria, or blue-green bacteria, that put the oxygen in the atmosphere in the first place, apparently were pumping out oxygen for millions of years before that, and also survived Earth’s glaciation.

The findings call into question the direst models of just how deep the deep freeze was, said University of Washington astrobiologist Roger Buick, a professor of Earth and space sciences. While the ice likely was widespread, it probably was not consistently as thick as a half-mile, he said.


"That kind of ice coverage chokes off photosynthesis, so there’s no food for anything, particularly eukaryotes. They just couldn’t survive," he said. "But this research shows they did survive."

Buick and colleagues studied droplets of oil encased in rock crystals dating from 2.4 billion years ago, recovered from the Elliot Lake area near Sault Ste. Marie, Ontario, Canada. The oil, essentially chemicals left from the breakdown of organic matter, contained biomarkers, or molecular fossils, that can be structurally identified as having come from specific types of life.

"It’s the same thing as looking at dinosaur fossils, except these fossils are at the molecular scale. You are looking at the molecular skeletons of carbon molecules, such as cholesterol, held within oil droplets," he said.

This is not the first time biomarkers indicating that eukaryotes and cyanobacteria were alive before "Snowball Earth" have been found in ancient rocks. A paper reaching the same conclusion was hailed as one of the top science breakthroughs of 1999. Buick did some of the research for that paper and was a co-author. But almost from its publication, detractors have said what was seen were not really ancient biomarkers but rather some kind of contamination that got into the samples being studied, possibly from oil flowing through shale rocks at a much later time or modern fossil fuel pollution.

"The contamination idea has always been nattered about in corridors or talked about in meetings, but never put down in print," Buick said. "What this new paper does is confirm these as being very, very old biomarkers."

The lead author of the paper, published in the June edition of Geology, is Adriana Dutkiewicz of the University of Sydney in Australia, for whom Buick served as a postdoctoral mentor. Other authors are Herbert Volk and Simon George of the Commonwealth Scientific and Industrial Research Organization in Australia and John Ridley of Colorado State University.

The researchers examined rock samples obtained from an outcrop near Elliot Lake, which then were fragmented into pieces less than one-tenth of an inch in diameter. The particles were cleaned thoroughly and checked for contamination throughout the process. The crystal fragments contained numerous minuscule pockets of fluid mostly consisting of water but also containing small amounts of oil, usually in a thin film around a bubble of water vapor. The oil resulted from decaying organic matter, probably of marine origin.

"A drop of oil is a treasure trove. It is highly concentrated molecular fossils," Buick said.

The biomarkers contained in the oil indicate that both eukaryotes and cyanobacteria first appeared before the planetary glaciation, rather than evolving at the same time or later, he said. The samples also suggest that oxygen was being produced long before the atmosphere became oxygenated, probably oxidizing metals such as iron in the Earth’s crust and ocean before the atmosphere began filling with oxygen.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>