Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers propose new hypothesis on the evolution of hot springs microorganisms

07.06.2006


Since their discovery in the late 1970s, microorganisms known as archaea have fascinated scientists with their ability to thrive where no other life can – in conditions that are extremely hot, acidic or salty.


These hot springs in Nevada, known as the Three Buddhas, harbor microorganisms known as archaea that thrive where no other life can. UGA researcher Chuanlun Zhang and his colleagues have proposed a new hypothesis on the origin of relatives of these hot springs microorganisms that live in low-temperature environments. Credit: University of Georgia



In the 1990s, however, scientists discovered that archaea occur widely in more mundane, low-temperature environments such as oceans and lakes. Now, researchers from the University of Georgia and Harvard University find evidence that these low-temperature archaea might have evolved from a moderate-temperature environment rather than from their high-temperature counterparts – as most scientists had believed. The results appear in the June 2006 issue of the journal Applied and Environmental Microbiology.

"Archaea represent one of the three domains of life on Earth," said Chuanlun Zhang, lead author of the study and associate professor of marine sciences at UGA. "Understanding their evolution may shed light on how all life forms evolve and interact with the environment through geological history."


Zhang and his colleagues examined a common group of archaea known as Crenarchaeota. He explains that the Crenarchaeota’s low-temperature success may involve a unique molecule known as crenarchaeol that allows the organism’s cell membrane to remain flexible in cooler environments.

The commonly held theory was that the crenarchaeol is a fairly new feature by evolutionary standards – evolving 112 million years ago during the Cretaceous period, the same period in which dinosaurs became extinct.

Zhang said the problem with this theory is that it puts the arrival of the organisms that contain crenarchaeol, Crenarchaeota, relatively late in geologic history and doesn’t explain how they arose.

By analyzing 17 samples from springs in California, Nevada and Thailand as well as examining data published by other researchers in different environments, Zhang and his colleagues found that crenarchaeol was most commonly found at temperatures of about 104 degrees Fahrenheit. This is well above even the warmest sea surface temperatures during the Cretaceous period, leading them to conclude that the crenarchaeol – and by extension the groups of Crenarchaeota that have the molecule – evolved much earlier than previously thought.

Zhang’s study puts the evolution of Crenarchaeota at 3.5 billion years ago, shortly after life began to emerge on Earth.

"Our study helped us to fill a significant gap about the evolution of Crenarchaeota," Zhang said. "The results show that the biomarker is not unique to the low-temperature environment. On the other hand, all known high-temperature (>158 °F) Crenarchaeota don’t have this biomarker. This suggests that the moderate-temperature Crenarchaeota may be the ancestors to the low-temperature species."

Zhang said understanding these ancient organisms is important to the planet’s future. Most scientists believe that Crenarchaeota play an important role in fixing carbon dioxide, helping sequester the greenhouse gases from the atmosphere. Having a better understanding of how abundant Crenarchaeota are and how much carbon they remove can help scientists more accurately model the effects of global warming.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>