Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UGA researchers propose new hypothesis on the evolution of hot springs microorganisms


Since their discovery in the late 1970s, microorganisms known as archaea have fascinated scientists with their ability to thrive where no other life can – in conditions that are extremely hot, acidic or salty.

These hot springs in Nevada, known as the Three Buddhas, harbor microorganisms known as archaea that thrive where no other life can. UGA researcher Chuanlun Zhang and his colleagues have proposed a new hypothesis on the origin of relatives of these hot springs microorganisms that live in low-temperature environments. Credit: University of Georgia

In the 1990s, however, scientists discovered that archaea occur widely in more mundane, low-temperature environments such as oceans and lakes. Now, researchers from the University of Georgia and Harvard University find evidence that these low-temperature archaea might have evolved from a moderate-temperature environment rather than from their high-temperature counterparts – as most scientists had believed. The results appear in the June 2006 issue of the journal Applied and Environmental Microbiology.

"Archaea represent one of the three domains of life on Earth," said Chuanlun Zhang, lead author of the study and associate professor of marine sciences at UGA. "Understanding their evolution may shed light on how all life forms evolve and interact with the environment through geological history."

Zhang and his colleagues examined a common group of archaea known as Crenarchaeota. He explains that the Crenarchaeota’s low-temperature success may involve a unique molecule known as crenarchaeol that allows the organism’s cell membrane to remain flexible in cooler environments.

The commonly held theory was that the crenarchaeol is a fairly new feature by evolutionary standards – evolving 112 million years ago during the Cretaceous period, the same period in which dinosaurs became extinct.

Zhang said the problem with this theory is that it puts the arrival of the organisms that contain crenarchaeol, Crenarchaeota, relatively late in geologic history and doesn’t explain how they arose.

By analyzing 17 samples from springs in California, Nevada and Thailand as well as examining data published by other researchers in different environments, Zhang and his colleagues found that crenarchaeol was most commonly found at temperatures of about 104 degrees Fahrenheit. This is well above even the warmest sea surface temperatures during the Cretaceous period, leading them to conclude that the crenarchaeol – and by extension the groups of Crenarchaeota that have the molecule – evolved much earlier than previously thought.

Zhang’s study puts the evolution of Crenarchaeota at 3.5 billion years ago, shortly after life began to emerge on Earth.

"Our study helped us to fill a significant gap about the evolution of Crenarchaeota," Zhang said. "The results show that the biomarker is not unique to the low-temperature environment. On the other hand, all known high-temperature (>158 °F) Crenarchaeota don’t have this biomarker. This suggests that the moderate-temperature Crenarchaeota may be the ancestors to the low-temperature species."

Zhang said understanding these ancient organisms is important to the planet’s future. Most scientists believe that Crenarchaeota play an important role in fixing carbon dioxide, helping sequester the greenhouse gases from the atmosphere. Having a better understanding of how abundant Crenarchaeota are and how much carbon they remove can help scientists more accurately model the effects of global warming.

Sam Fahmy | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>