Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers propose new hypothesis on the evolution of hot springs microorganisms

07.06.2006


Since their discovery in the late 1970s, microorganisms known as archaea have fascinated scientists with their ability to thrive where no other life can – in conditions that are extremely hot, acidic or salty.


These hot springs in Nevada, known as the Three Buddhas, harbor microorganisms known as archaea that thrive where no other life can. UGA researcher Chuanlun Zhang and his colleagues have proposed a new hypothesis on the origin of relatives of these hot springs microorganisms that live in low-temperature environments. Credit: University of Georgia



In the 1990s, however, scientists discovered that archaea occur widely in more mundane, low-temperature environments such as oceans and lakes. Now, researchers from the University of Georgia and Harvard University find evidence that these low-temperature archaea might have evolved from a moderate-temperature environment rather than from their high-temperature counterparts – as most scientists had believed. The results appear in the June 2006 issue of the journal Applied and Environmental Microbiology.

"Archaea represent one of the three domains of life on Earth," said Chuanlun Zhang, lead author of the study and associate professor of marine sciences at UGA. "Understanding their evolution may shed light on how all life forms evolve and interact with the environment through geological history."


Zhang and his colleagues examined a common group of archaea known as Crenarchaeota. He explains that the Crenarchaeota’s low-temperature success may involve a unique molecule known as crenarchaeol that allows the organism’s cell membrane to remain flexible in cooler environments.

The commonly held theory was that the crenarchaeol is a fairly new feature by evolutionary standards – evolving 112 million years ago during the Cretaceous period, the same period in which dinosaurs became extinct.

Zhang said the problem with this theory is that it puts the arrival of the organisms that contain crenarchaeol, Crenarchaeota, relatively late in geologic history and doesn’t explain how they arose.

By analyzing 17 samples from springs in California, Nevada and Thailand as well as examining data published by other researchers in different environments, Zhang and his colleagues found that crenarchaeol was most commonly found at temperatures of about 104 degrees Fahrenheit. This is well above even the warmest sea surface temperatures during the Cretaceous period, leading them to conclude that the crenarchaeol – and by extension the groups of Crenarchaeota that have the molecule – evolved much earlier than previously thought.

Zhang’s study puts the evolution of Crenarchaeota at 3.5 billion years ago, shortly after life began to emerge on Earth.

"Our study helped us to fill a significant gap about the evolution of Crenarchaeota," Zhang said. "The results show that the biomarker is not unique to the low-temperature environment. On the other hand, all known high-temperature (>158 °F) Crenarchaeota don’t have this biomarker. This suggests that the moderate-temperature Crenarchaeota may be the ancestors to the low-temperature species."

Zhang said understanding these ancient organisms is important to the planet’s future. Most scientists believe that Crenarchaeota play an important role in fixing carbon dioxide, helping sequester the greenhouse gases from the atmosphere. Having a better understanding of how abundant Crenarchaeota are and how much carbon they remove can help scientists more accurately model the effects of global warming.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>