Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers propose new hypothesis on the evolution of hot springs microorganisms

07.06.2006


Since their discovery in the late 1970s, microorganisms known as archaea have fascinated scientists with their ability to thrive where no other life can – in conditions that are extremely hot, acidic or salty.


These hot springs in Nevada, known as the Three Buddhas, harbor microorganisms known as archaea that thrive where no other life can. UGA researcher Chuanlun Zhang and his colleagues have proposed a new hypothesis on the origin of relatives of these hot springs microorganisms that live in low-temperature environments. Credit: University of Georgia



In the 1990s, however, scientists discovered that archaea occur widely in more mundane, low-temperature environments such as oceans and lakes. Now, researchers from the University of Georgia and Harvard University find evidence that these low-temperature archaea might have evolved from a moderate-temperature environment rather than from their high-temperature counterparts – as most scientists had believed. The results appear in the June 2006 issue of the journal Applied and Environmental Microbiology.

"Archaea represent one of the three domains of life on Earth," said Chuanlun Zhang, lead author of the study and associate professor of marine sciences at UGA. "Understanding their evolution may shed light on how all life forms evolve and interact with the environment through geological history."


Zhang and his colleagues examined a common group of archaea known as Crenarchaeota. He explains that the Crenarchaeota’s low-temperature success may involve a unique molecule known as crenarchaeol that allows the organism’s cell membrane to remain flexible in cooler environments.

The commonly held theory was that the crenarchaeol is a fairly new feature by evolutionary standards – evolving 112 million years ago during the Cretaceous period, the same period in which dinosaurs became extinct.

Zhang said the problem with this theory is that it puts the arrival of the organisms that contain crenarchaeol, Crenarchaeota, relatively late in geologic history and doesn’t explain how they arose.

By analyzing 17 samples from springs in California, Nevada and Thailand as well as examining data published by other researchers in different environments, Zhang and his colleagues found that crenarchaeol was most commonly found at temperatures of about 104 degrees Fahrenheit. This is well above even the warmest sea surface temperatures during the Cretaceous period, leading them to conclude that the crenarchaeol – and by extension the groups of Crenarchaeota that have the molecule – evolved much earlier than previously thought.

Zhang’s study puts the evolution of Crenarchaeota at 3.5 billion years ago, shortly after life began to emerge on Earth.

"Our study helped us to fill a significant gap about the evolution of Crenarchaeota," Zhang said. "The results show that the biomarker is not unique to the low-temperature environment. On the other hand, all known high-temperature (>158 °F) Crenarchaeota don’t have this biomarker. This suggests that the moderate-temperature Crenarchaeota may be the ancestors to the low-temperature species."

Zhang said understanding these ancient organisms is important to the planet’s future. Most scientists believe that Crenarchaeota play an important role in fixing carbon dioxide, helping sequester the greenhouse gases from the atmosphere. Having a better understanding of how abundant Crenarchaeota are and how much carbon they remove can help scientists more accurately model the effects of global warming.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>