Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sinking levees

01.06.2006


New report in Nature maps subsidence, addresses flooding in New Orleans



Most of New Orleans is sinking at an average rate of 6mm a year. In some areas, subsidence is occurring at a rate of as much as 29mm/year. That’s according to research published in this week’s edition of the journal Nature by scientists from the University of Miami Rosenstiel School of Marine and Atmospheric Science. Titled, "Subsidence and Flooding in New Orleans," the authors conclude that when global sea level rise is factored into their analysis, the average rate of subsidence of the city relative to sea level is even higher – 8mm on average per year.

"When you multiply this over 20, 30, or even 100 years, you can see that New Orleans will be lower, and this information should be factored into reconstruction plans, as we look at subsidence that is up to 3 feet in 40 years," said the lead author of the paper, Dr. Tim Dixon, Rosenstiel School geophysics professor. "What we found is that some of the levee failure in New Orleans were places where subsidence was highest. These levees were built over 40 years ago and in some cases, the ground had subsided a minimum of 3 feet which probably put them lower than their design level."


Through analysis of satellite radar imagery, and using structures in the city that strongly reflect the radar signal, the researchers were able to see where land is subsiding the most in New Orleans.

The team generated a map from space-based synthetic-aperture radar measurements, and note in their paper that it "revealed that parts of New Orleans underwent rapid subsidence in the three years before Hurricane Katrina struck in August 2005. One such area was next to the Mississippi River-Gulf Outlet (MRGO) canal: levees failed here during the peak storm surge and the new map indicates that this could be explained by subsidence of a meter or more since the levee’s construction."

To make the map, the team used 33 scenes recorded from Canada’s RADARSAT satellite. The technique involves phase comparison of 33 radar images taken at different times along the same orbit and exploits points on the ground that strongly reflect radar, termed "permanent scatterers."

"While it may not trouble people that the ground is nearly one inch lower each year in places, in the long term, the impacts could be rather significant," said Dr. Falk Amelung, one of the paper’s co-authors, also from the University of Miami Rosenstiel School. "While most people aren’t accustomed to thinking about 100 years out, it’s important to recognize that a large part of New Orleans is sitting on sediments that will only continue to sink into the Gulf of Mexico, and it will only get harder and harder to ensure the levees’ durability. By 2106, for example, the ground will be nearly three feet lower on average."

"Global warming poses further challenges to this issue, as well," said Shimon Wdowinski another co-author from the University of Miami Rosenstiel School. "As the larger Mississippi Delta slowly slides into the Gulf of Mexico, the levees will be further tested if global warming increases the intensity and frequency of hurricanes."

The researchers conclude that their subsidence estimates for the levees "are probably minimum estimates when considered over the lifetime of the levees, given that subsidence was most rapid in the first few years after their construction in the 1960s. Levee failure may have resulted from overtopping because the levees were too low.

"Data from the U.S. Army Corps of Engineers collected after hurricanes Katrina and Rita confirm that water overtopped some levees that subsequently failed. Alternatively, the high subsidence rates the team observed might reflect active faulting or a weak, easily compacted soil, promoting failure at or near the levee base."

Ivy Kupec | EurekAlert!
Further information:
http://www.miami.edu

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>