Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New space observations poised to save lives from floods, landslides

26.05.2006


Using NASA’s advanced Earth-observing satellites, scientists have discovered a new opportunity to build early detection systems that might protect thousands from floods and landslides.



This potential breakthrough in disaster monitoring and warning links satellite observations of soil type, vegetation and land slope with observations of rainfall, rivers and topography.

"Flood and landslides are the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year," said Bob Adler, project scientist for the Tropical Rainfall Measuring Mission at NASA’s Goddard Space Flight Center, Greenbelt, Md., and lead scientist of one of four projects that share a similar focus. "Between 1985 and 2000 over 300,000 people lost their lives to flooding and their associated landslides. Currently, no system exists at either a regional or a global scale to monitor rainfall conditions that may trigger these disasters."


"Our use of space as a vantage point to better understand floods and landslides will enable agencies and other public officials charged with doing so to actually apply what we’re learning in ways that will make a tangible difference in a lot of lives all over the world," said Yang Hong, a research scientist at Goddard and lead scientist of one of the research projects. The research used data from several NASA satellites -- the Tropical Rainfall Measuring Mission, Aqua, the Shuttle Radar Topography Mission, QuikSCAT and Earth Observing-1 -- and NOAA’s Geostationary Operational Environmental satellites.

The havoc of landslides and floods is felt most acutely in parts of the world without extensive flood and rainfall monitoring ground networks.

Scientists approached the study of how satellite remote sensing can be applied to create flood and landslide detection from several angles. Space-based remote sensing allows scientists to look at the whole earth from above, improving their understanding of how Earth’s system components behave and interact with each other.

Robert Brakenridge and his colleagues at Dartmouth College, Hanover, N.H., are using satellite microwave sensors to estimate water discharge from rivers by measuring almost daily changes in river widths.

"This month much of New England suffered from its worst flooding since 1936, causing governors in several states to declare states of emergency," said Brakenridge. "Satellite observations can be absolutely essential in lessening the severity on the local economies and possible injuries in such future occurrences if they can be galvanized to create more reliable warning systems."

Kwabena Asante, a senior scientist at U.S. Geological Survey in Sioux Falls, S.D., led research that puts forward an innovative method of mapping floods around the globe using a combination of data from NASA’s Tropical Rainfall Measuring Mission and the Shuttle Radar Topography Mission. This new development could offer a practical solution to the significant challenge of creating cost-effective early warning systems particularly needed in data scarce, rural areas.

Edward Campion | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/springagu_2006.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>