Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismologists detect a sunken slab of ocean floor deep in the Earth

18.05.2006


Halfway to the center of the Earth, at the boundary between the core and the mantle, lies a massive folded slab of rock that once formed the ocean floor and sank beneath North America some 50 million years ago. A team of seismologists led by scientists at the University of California, Santa Cruz, detected the slab by analyzing seismic waves reflected from the deepest layer of the mantle beneath an area off the west coast of Central America.



"If you imagine cold honey pouring onto a plate, you would see ripples and folds as it piles up and spreads out, and that’s what we think we are seeing at the base of the mantle," said Alex Hutko, a graduate student in Earth sciences at UCSC and first author of a paper describing the new findings in the May 18 issue of the journal Nature.

The discovery sheds new light on the processes that drive the movement of Earth’s tectonic plates. The planet’s outermost layer, or lithosphere, is broken into large, rigid plates composed of the crust and the outer layer of the mantle. New plate material is created at mid-oceanic ridges, where the ocean floor spreads apart, and old plate material is consumed in subduction zones, where one plate dives beneath another. But the fate of subducted lithosphere has been uncertain.


"There is a big debate over whether subducted slabs sink all the way down to the base of the mantle or get trapped in the upper mantle. This is one line of evidence favoring the presence of subducted slabs in the deep mantle," said Thorne Lay, professor of Earth sciences at UCSC and coauthor of the Nature paper.

"It’s the first evidence from direct imaging to support the idea that ancient seafloor makes its way down to the bottom of the mantle," Hutko added.

Within the mantle, which extends to a depth of about 1,740 miles, cold rock sinks while hot plumes rise toward the surface, and this slow circulation of mantle rock is thought to drive the movement of plates in the lithosphere. The base of the mantle absorbs heat from the core. The researchers were able to image the buckling and folding of subducted oceanic lithosphere at the base of the mantle because of the temperature difference between the relatively cool subducted slab and the hotter mantle rock surrounding it.

The subducted slab is composed of essentially the same minerals as the surrounding mantle, but its temperature is about 700 degrees Celsius cooler, Hutko said. This temperature difference affects the location of a "phase transition," where the crystal structure of the mantle rock changes due to increasing pressure and temperature with depth. Seismic energy reflected by this phase transition revealed an abrupt step in the phase boundary about 60 miles (100 kilometers) high.

"That’s more than the thickness of the crust," Lay said. "It’s a huge geological structure and it requires some large-scale dynamic process to produce it. A subducted slab piling up and spreading out is the only mechanism we know of that could give such an abrupt step."

The researchers also saw evidence of hot plume-like structures at the edge of the slab, indicating possible upwelling of hot material from the base of the mantle as the spreading slab pushes into it.

"We think there is a kind of pushing and bulldozing away of a hot basal layer of the mantle, giving rise to small plumes at the edges," Hutko said.

The study used seismic data from earthquakes in South America that were recorded at seismographic stations in the western United States. The researchers analyzed the data using imaging techniques adapted from those used in oil exploration to study complex structures in the crust.

"The oil industry has been using these techniques for decades, but only recently have we been able to exploit them for the deep Earth because of new data available from the seismographic network," Hutko said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>