Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismologists detect a sunken slab of ocean floor deep in the Earth

18.05.2006


Halfway to the center of the Earth, at the boundary between the core and the mantle, lies a massive folded slab of rock that once formed the ocean floor and sank beneath North America some 50 million years ago. A team of seismologists led by scientists at the University of California, Santa Cruz, detected the slab by analyzing seismic waves reflected from the deepest layer of the mantle beneath an area off the west coast of Central America.



"If you imagine cold honey pouring onto a plate, you would see ripples and folds as it piles up and spreads out, and that’s what we think we are seeing at the base of the mantle," said Alex Hutko, a graduate student in Earth sciences at UCSC and first author of a paper describing the new findings in the May 18 issue of the journal Nature.

The discovery sheds new light on the processes that drive the movement of Earth’s tectonic plates. The planet’s outermost layer, or lithosphere, is broken into large, rigid plates composed of the crust and the outer layer of the mantle. New plate material is created at mid-oceanic ridges, where the ocean floor spreads apart, and old plate material is consumed in subduction zones, where one plate dives beneath another. But the fate of subducted lithosphere has been uncertain.


"There is a big debate over whether subducted slabs sink all the way down to the base of the mantle or get trapped in the upper mantle. This is one line of evidence favoring the presence of subducted slabs in the deep mantle," said Thorne Lay, professor of Earth sciences at UCSC and coauthor of the Nature paper.

"It’s the first evidence from direct imaging to support the idea that ancient seafloor makes its way down to the bottom of the mantle," Hutko added.

Within the mantle, which extends to a depth of about 1,740 miles, cold rock sinks while hot plumes rise toward the surface, and this slow circulation of mantle rock is thought to drive the movement of plates in the lithosphere. The base of the mantle absorbs heat from the core. The researchers were able to image the buckling and folding of subducted oceanic lithosphere at the base of the mantle because of the temperature difference between the relatively cool subducted slab and the hotter mantle rock surrounding it.

The subducted slab is composed of essentially the same minerals as the surrounding mantle, but its temperature is about 700 degrees Celsius cooler, Hutko said. This temperature difference affects the location of a "phase transition," where the crystal structure of the mantle rock changes due to increasing pressure and temperature with depth. Seismic energy reflected by this phase transition revealed an abrupt step in the phase boundary about 60 miles (100 kilometers) high.

"That’s more than the thickness of the crust," Lay said. "It’s a huge geological structure and it requires some large-scale dynamic process to produce it. A subducted slab piling up and spreading out is the only mechanism we know of that could give such an abrupt step."

The researchers also saw evidence of hot plume-like structures at the edge of the slab, indicating possible upwelling of hot material from the base of the mantle as the spreading slab pushes into it.

"We think there is a kind of pushing and bulldozing away of a hot basal layer of the mantle, giving rise to small plumes at the edges," Hutko said.

The study used seismic data from earthquakes in South America that were recorded at seismographic stations in the western United States. The researchers analyzed the data using imaging techniques adapted from those used in oil exploration to study complex structures in the crust.

"The oil industry has been using these techniques for decades, but only recently have we been able to exploit them for the deep Earth because of new data available from the seismographic network," Hutko said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>