Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismologists detect a sunken slab of ocean floor deep in the Earth

18.05.2006


Halfway to the center of the Earth, at the boundary between the core and the mantle, lies a massive folded slab of rock that once formed the ocean floor and sank beneath North America some 50 million years ago. A team of seismologists led by scientists at the University of California, Santa Cruz, detected the slab by analyzing seismic waves reflected from the deepest layer of the mantle beneath an area off the west coast of Central America.



"If you imagine cold honey pouring onto a plate, you would see ripples and folds as it piles up and spreads out, and that’s what we think we are seeing at the base of the mantle," said Alex Hutko, a graduate student in Earth sciences at UCSC and first author of a paper describing the new findings in the May 18 issue of the journal Nature.

The discovery sheds new light on the processes that drive the movement of Earth’s tectonic plates. The planet’s outermost layer, or lithosphere, is broken into large, rigid plates composed of the crust and the outer layer of the mantle. New plate material is created at mid-oceanic ridges, where the ocean floor spreads apart, and old plate material is consumed in subduction zones, where one plate dives beneath another. But the fate of subducted lithosphere has been uncertain.


"There is a big debate over whether subducted slabs sink all the way down to the base of the mantle or get trapped in the upper mantle. This is one line of evidence favoring the presence of subducted slabs in the deep mantle," said Thorne Lay, professor of Earth sciences at UCSC and coauthor of the Nature paper.

"It’s the first evidence from direct imaging to support the idea that ancient seafloor makes its way down to the bottom of the mantle," Hutko added.

Within the mantle, which extends to a depth of about 1,740 miles, cold rock sinks while hot plumes rise toward the surface, and this slow circulation of mantle rock is thought to drive the movement of plates in the lithosphere. The base of the mantle absorbs heat from the core. The researchers were able to image the buckling and folding of subducted oceanic lithosphere at the base of the mantle because of the temperature difference between the relatively cool subducted slab and the hotter mantle rock surrounding it.

The subducted slab is composed of essentially the same minerals as the surrounding mantle, but its temperature is about 700 degrees Celsius cooler, Hutko said. This temperature difference affects the location of a "phase transition," where the crystal structure of the mantle rock changes due to increasing pressure and temperature with depth. Seismic energy reflected by this phase transition revealed an abrupt step in the phase boundary about 60 miles (100 kilometers) high.

"That’s more than the thickness of the crust," Lay said. "It’s a huge geological structure and it requires some large-scale dynamic process to produce it. A subducted slab piling up and spreading out is the only mechanism we know of that could give such an abrupt step."

The researchers also saw evidence of hot plume-like structures at the edge of the slab, indicating possible upwelling of hot material from the base of the mantle as the spreading slab pushes into it.

"We think there is a kind of pushing and bulldozing away of a hot basal layer of the mantle, giving rise to small plumes at the edges," Hutko said.

The study used seismic data from earthquakes in South America that were recorded at seismographic stations in the western United States. The researchers analyzed the data using imaging techniques adapted from those used in oil exploration to study complex structures in the crust.

"The oil industry has been using these techniques for decades, but only recently have we been able to exploit them for the deep Earth because of new data available from the seismographic network," Hutko said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>