Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabled equatorial icecaps to disappear

17.05.2006


Fabled equatorial icecaps will disappear within two decades because of global warming, a study led by UCL (University College London) has found.



Reporting online in the journal Geophysical Research Letters, the first survey in a decade of glaciers in the Rwenzori Mountains, East Africa, has found that an increase in air temperature over the last four decades has contributed to a substantial reduction in glacial cover.

The Rwenzori Mountains - also known as the ’Mountains of the Moon’ - straddle the border between the Democratic Republic of Congo and the Republic of Uganda. They are home to one of four remaining tropical ice fields outside of the Andes and are renowned for their spectacular and rare Afroalpine flora and fauna. The mountains’ legendary status was established during the 2nd century when the Greek geographer Ptolemy made the seemingly preposterous but ultimately accurate proclamation that the River Nile was supplied by snow-capped mountains at the equator in Africa: "The Mountains of the Moon whose snows feed the lakes, sources of the Nile".


The glaciers were first surveyed a century ago when glacial cover over the entire range was estimated to be 6.5 square kilometres. Recent field surveys and satellite mapping of glaciers conducted by UCL with researchers from Makerere University, Uganda and the Ugandan Water Resources Management Department show that some glaciers are receding tens of metres each year and that the area covered by glaciers halved between 1987 and 2003.

The team found that since the 1960s there are clear trends toward increased air temperature around the Rwenzori Mountains without significant changes in precipitation. With less than one square kilometre of glacier ice remaining, glaciers are expected to disappear within the next twenty years if present trends continue.

Dr Richard Taylor, of the UCL Department of Geography who led the study, says:

"Recession of these tropical glaciers sends an unambiguous message of a changing climate in this region of the tropics. Considerable scientific debate exists, however, as to whether changes in temperature or precipitation are responsible for the shrinking of glaciers in the East African Highlands that also include Kilimanjaro and Mount Kenya."

A key focus of the UCL led research is the impact of climate change on water resources in Africa. Their on-going work highlights that glacial recession in Rwenzori Mountains is not expected to have a significant effect on alpine river flow due to the small size of the remaining glaciers. However, it remains unclear how the projected loss of the glaciers will affect tourism and the traditional belief systems of the local BaKonzo people. Nzururu, the local word for snow and ice, is the father of the spirits who are responsible for human life, its continuity and its welfare.

"Considering the continent’s negligible contribution to global greenhouse-gas emissions, it is a terrible irony that Africa, according to current predictions, will be most affected by climate change," added Dr Taylor.

"Furthermore, the rise in air temperature is consistent with other regional studies that show how dramatic increases in malaria in the East African Highlands may arise, in part, from warmer temperatures as mosquitoes are able to colonise previously inhospitable highland areas."

The research was funded by The Royal Geographical Society and The Royal Society.

Judith Moore | alfa
Further information:
http://www.ucl.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>