Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabled equatorial icecaps to disappear

17.05.2006


Fabled equatorial icecaps will disappear within two decades because of global warming, a study led by UCL (University College London) has found.



Reporting online in the journal Geophysical Research Letters, the first survey in a decade of glaciers in the Rwenzori Mountains, East Africa, has found that an increase in air temperature over the last four decades has contributed to a substantial reduction in glacial cover.

The Rwenzori Mountains - also known as the ’Mountains of the Moon’ - straddle the border between the Democratic Republic of Congo and the Republic of Uganda. They are home to one of four remaining tropical ice fields outside of the Andes and are renowned for their spectacular and rare Afroalpine flora and fauna. The mountains’ legendary status was established during the 2nd century when the Greek geographer Ptolemy made the seemingly preposterous but ultimately accurate proclamation that the River Nile was supplied by snow-capped mountains at the equator in Africa: "The Mountains of the Moon whose snows feed the lakes, sources of the Nile".


The glaciers were first surveyed a century ago when glacial cover over the entire range was estimated to be 6.5 square kilometres. Recent field surveys and satellite mapping of glaciers conducted by UCL with researchers from Makerere University, Uganda and the Ugandan Water Resources Management Department show that some glaciers are receding tens of metres each year and that the area covered by glaciers halved between 1987 and 2003.

The team found that since the 1960s there are clear trends toward increased air temperature around the Rwenzori Mountains without significant changes in precipitation. With less than one square kilometre of glacier ice remaining, glaciers are expected to disappear within the next twenty years if present trends continue.

Dr Richard Taylor, of the UCL Department of Geography who led the study, says:

"Recession of these tropical glaciers sends an unambiguous message of a changing climate in this region of the tropics. Considerable scientific debate exists, however, as to whether changes in temperature or precipitation are responsible for the shrinking of glaciers in the East African Highlands that also include Kilimanjaro and Mount Kenya."

A key focus of the UCL led research is the impact of climate change on water resources in Africa. Their on-going work highlights that glacial recession in Rwenzori Mountains is not expected to have a significant effect on alpine river flow due to the small size of the remaining glaciers. However, it remains unclear how the projected loss of the glaciers will affect tourism and the traditional belief systems of the local BaKonzo people. Nzururu, the local word for snow and ice, is the father of the spirits who are responsible for human life, its continuity and its welfare.

"Considering the continent’s negligible contribution to global greenhouse-gas emissions, it is a terrible irony that Africa, according to current predictions, will be most affected by climate change," added Dr Taylor.

"Furthermore, the rise in air temperature is consistent with other regional studies that show how dramatic increases in malaria in the East African Highlands may arise, in part, from warmer temperatures as mosquitoes are able to colonise previously inhospitable highland areas."

The research was funded by The Royal Geographical Society and The Royal Society.

Judith Moore | alfa
Further information:
http://www.ucl.ac.uk

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>