Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoseismic technologies for nanoearthquakes

15.05.2006


Researchers of the Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, and the Schmidt Institute of Physics of Earth, Russian Academy of Sciences, have developed technology that allows to register nanoearthquakes - seismic events of minimal possible magnitudes (-4, -5). Registration of such events allows to quickly and accurately make up seismic activity maps of small-scale territories.



Investigation of seismic activity in quiet areas (including revelation and assessment of degree of fracture activity) is of great practical importance. People are laying pipelines, building nuclear power-stations, radioactive waste storages and other potentially dangerous constructions, including tower buildings. However, the earth is vibrating from time to time even in the quietest areas. Certainly, typical shaking of the earth in the middle of the platform is much weaker than that in active regions, but it can also cause trouble if minifracture happens to go under a nuclear power plant. Nanoearthquakes can serve the indicator of seismic well-being in a certain area, but observations over nanoearthquakes require special technology.

Seismic activity of the territory is judged by the earthquake recurrence diagram. In a double logarithmic scale, the diagram represents a straight line, the slope of which characterized seismic activity. The diagram is drawn up based on observation results. Strong earthquakes are the easiest to register but they have to be awaited for a long time. To obtain reliable information about weaker and more frequent quakes, which slightly exceed the noise level and occur 10 to 20 times within half an hour, the researchers have to spend several days per each spot. Only three hours are needed to measure the most feeble events, but they are difficult to be distinguished from disturbances caused by the wash, transport motion or the life of a big settlemen. Besides, existence of such feeble vibrations was assumed only theoretically. However, Russian geophysicists have managed to record them.


They solved technical difficulties by placing seismic sensors simultaneously in three spots: at the very measurement point and 1 to 3 kilometers to the north and south from it, and then – in the latitudinal direction – to the east and to the west. Registration of microquakes was carried out in the 0.5-30 Hz band, the majority of man-caused noise being sieved out at this frequency. The above method also allows to ignore surface vibrations and to take into account only quakes coming from the depth. The researchers made records in each of the three points for three hours, and then they compared the records, thus counting the coherence function between the points. As seismic noise level is approximately the same in a small territory, the method allows to quantitatively compare seismic activity in the points located 1 to 3 kilometers from each other, and to single out feeble earthquakes, the energy of which is billion of times less than that of earthquakes registered by ordinary seismic stations. Therefore, the researchers have confirmed that nanoearthquakes do exist.

With the help of two simultaneously operating portable digital seismometric stations, the researchers rather quickly took a reading from more than 20 points in the region of the Northern Dvina estuary not far from Arkhangelsk. The region was not selected at random – the researchers had previously investigated it and found an active fracture in the the earth’s crust. Recording of nanoearthequakes allowed to more precisely define position and structure of this fracture.

Making an assessment of the new nanoseismic technology, its developers emphasize its simplicity and economy, which are very important for reconnaissance work, particularly in almost impassable conditions. Such technology will help to investigate global processes in the solid covering of earth and the role of seismically quiet areas in these processes.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>