Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoseismic technologies for nanoearthquakes


Researchers of the Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, and the Schmidt Institute of Physics of Earth, Russian Academy of Sciences, have developed technology that allows to register nanoearthquakes - seismic events of minimal possible magnitudes (-4, -5). Registration of such events allows to quickly and accurately make up seismic activity maps of small-scale territories.

Investigation of seismic activity in quiet areas (including revelation and assessment of degree of fracture activity) is of great practical importance. People are laying pipelines, building nuclear power-stations, radioactive waste storages and other potentially dangerous constructions, including tower buildings. However, the earth is vibrating from time to time even in the quietest areas. Certainly, typical shaking of the earth in the middle of the platform is much weaker than that in active regions, but it can also cause trouble if minifracture happens to go under a nuclear power plant. Nanoearthquakes can serve the indicator of seismic well-being in a certain area, but observations over nanoearthquakes require special technology.

Seismic activity of the territory is judged by the earthquake recurrence diagram. In a double logarithmic scale, the diagram represents a straight line, the slope of which characterized seismic activity. The diagram is drawn up based on observation results. Strong earthquakes are the easiest to register but they have to be awaited for a long time. To obtain reliable information about weaker and more frequent quakes, which slightly exceed the noise level and occur 10 to 20 times within half an hour, the researchers have to spend several days per each spot. Only three hours are needed to measure the most feeble events, but they are difficult to be distinguished from disturbances caused by the wash, transport motion or the life of a big settlemen. Besides, existence of such feeble vibrations was assumed only theoretically. However, Russian geophysicists have managed to record them.

They solved technical difficulties by placing seismic sensors simultaneously in three spots: at the very measurement point and 1 to 3 kilometers to the north and south from it, and then – in the latitudinal direction – to the east and to the west. Registration of microquakes was carried out in the 0.5-30 Hz band, the majority of man-caused noise being sieved out at this frequency. The above method also allows to ignore surface vibrations and to take into account only quakes coming from the depth. The researchers made records in each of the three points for three hours, and then they compared the records, thus counting the coherence function between the points. As seismic noise level is approximately the same in a small territory, the method allows to quantitatively compare seismic activity in the points located 1 to 3 kilometers from each other, and to single out feeble earthquakes, the energy of which is billion of times less than that of earthquakes registered by ordinary seismic stations. Therefore, the researchers have confirmed that nanoearthquakes do exist.

With the help of two simultaneously operating portable digital seismometric stations, the researchers rather quickly took a reading from more than 20 points in the region of the Northern Dvina estuary not far from Arkhangelsk. The region was not selected at random – the researchers had previously investigated it and found an active fracture in the the earth’s crust. Recording of nanoearthequakes allowed to more precisely define position and structure of this fracture.

Making an assessment of the new nanoseismic technology, its developers emphasize its simplicity and economy, which are very important for reconnaissance work, particularly in almost impassable conditions. Such technology will help to investigate global processes in the solid covering of earth and the role of seismically quiet areas in these processes.

Sergey Komarov | alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>