Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoseismic technologies for nanoearthquakes

15.05.2006


Researchers of the Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, and the Schmidt Institute of Physics of Earth, Russian Academy of Sciences, have developed technology that allows to register nanoearthquakes - seismic events of minimal possible magnitudes (-4, -5). Registration of such events allows to quickly and accurately make up seismic activity maps of small-scale territories.



Investigation of seismic activity in quiet areas (including revelation and assessment of degree of fracture activity) is of great practical importance. People are laying pipelines, building nuclear power-stations, radioactive waste storages and other potentially dangerous constructions, including tower buildings. However, the earth is vibrating from time to time even in the quietest areas. Certainly, typical shaking of the earth in the middle of the platform is much weaker than that in active regions, but it can also cause trouble if minifracture happens to go under a nuclear power plant. Nanoearthquakes can serve the indicator of seismic well-being in a certain area, but observations over nanoearthquakes require special technology.

Seismic activity of the territory is judged by the earthquake recurrence diagram. In a double logarithmic scale, the diagram represents a straight line, the slope of which characterized seismic activity. The diagram is drawn up based on observation results. Strong earthquakes are the easiest to register but they have to be awaited for a long time. To obtain reliable information about weaker and more frequent quakes, which slightly exceed the noise level and occur 10 to 20 times within half an hour, the researchers have to spend several days per each spot. Only three hours are needed to measure the most feeble events, but they are difficult to be distinguished from disturbances caused by the wash, transport motion or the life of a big settlemen. Besides, existence of such feeble vibrations was assumed only theoretically. However, Russian geophysicists have managed to record them.


They solved technical difficulties by placing seismic sensors simultaneously in three spots: at the very measurement point and 1 to 3 kilometers to the north and south from it, and then – in the latitudinal direction – to the east and to the west. Registration of microquakes was carried out in the 0.5-30 Hz band, the majority of man-caused noise being sieved out at this frequency. The above method also allows to ignore surface vibrations and to take into account only quakes coming from the depth. The researchers made records in each of the three points for three hours, and then they compared the records, thus counting the coherence function between the points. As seismic noise level is approximately the same in a small territory, the method allows to quantitatively compare seismic activity in the points located 1 to 3 kilometers from each other, and to single out feeble earthquakes, the energy of which is billion of times less than that of earthquakes registered by ordinary seismic stations. Therefore, the researchers have confirmed that nanoearthquakes do exist.

With the help of two simultaneously operating portable digital seismometric stations, the researchers rather quickly took a reading from more than 20 points in the region of the Northern Dvina estuary not far from Arkhangelsk. The region was not selected at random – the researchers had previously investigated it and found an active fracture in the the earth’s crust. Recording of nanoearthequakes allowed to more precisely define position and structure of this fracture.

Making an assessment of the new nanoseismic technology, its developers emphasize its simplicity and economy, which are very important for reconnaissance work, particularly in almost impassable conditions. Such technology will help to investigate global processes in the solid covering of earth and the role of seismically quiet areas in these processes.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>