Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystallographers explain seismic anisotropy of Earth’s D’’layer

12.05.2006


ETH researchers discovered a very unusual mechanism of plastic deformation in the Earth’s mantle. Furthermore, they have predicted a new family of mantle minerals. These discoveries shed new light on the plastic flow of mantle rocks inside our planet - the process that controls plate tectonics and the associated earthquakes, volcanism, and continental drift.



Plastic flow in the Earth’s mantle is the microscopic process behind plate tectonics and the associated continental drift, volcanism and earthquakes. Seismic anisotropy is the main signature of plastic flow inside the Earth. Its character depends on the properties of Earth-forming minerals. Simulations have provided a new insight that leads to a more consistent picture of the dynamics of our planet. According to seismic observations, the lowermost 150 km of the Earth’s mantle, known as the D"layer, possess many unusual properties. Many of these anomalies were explained by the properties of post-perovskite (Mg,Fe)SiO3, the dominant mineral of the D"layer. Still, it remained difficult to explain the observed strong seismic anisotropy of the D"layer. Now, thanks to metadynamics, a novel simulation methodology, ETH researcher Artem R. Oganov and colleagues have explained these seismic observations. They came up with an unexpected mechanism of plastic deformation of post-perovskite involving the formation of nanoscale slices of the lower-pressure perovskite structure along the (110) planes of post-perovskite. The ETH researchers could show that this mechanism fully explains the observed seismic anisotropy and some geophysical observations are consistent only with this mechanism.

New minerals in the Earth’s mantle


Structures containing slices of the perovskite and post-perovskite structures are not only a result of plastic deformation. Researchers have predicted a whole infinite family of minerals of the same composition, (Mg,Fe)SiO3, built of alternating nanoscale slices of the perovskite and post-perovskite structures. According to quantummechanical calculations of ETH researcher Artem R. Oganov and colleagues, such unusual minerals could become important stable minerals in the Earth’s mantle. Several research groups are now trying to synthesize these predicted minerals. If successful, these attempts will lead to a new mineralogical model of the Earth’s interior. The research results have been published in the end of 2005 in "Nature".

For more information and pictures:
Prof. Artem R. Oganov
ETH Zurich, Laboratory of Crystallography
Phone +4 +41(0)44 632 37 52 or +41(0)43 300 18 73
E-Mail a.oganov@mat.ethz.ch

Anke Poiger | idw
Further information:
http://www.crystal.mat.ethz.ch/research/theory_proj
http://www.nature.com/nature/journal/v438/n7071/full/nature04439.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>