Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystallographers explain seismic anisotropy of Earth’s D’’layer

12.05.2006


ETH researchers discovered a very unusual mechanism of plastic deformation in the Earth’s mantle. Furthermore, they have predicted a new family of mantle minerals. These discoveries shed new light on the plastic flow of mantle rocks inside our planet - the process that controls plate tectonics and the associated earthquakes, volcanism, and continental drift.



Plastic flow in the Earth’s mantle is the microscopic process behind plate tectonics and the associated continental drift, volcanism and earthquakes. Seismic anisotropy is the main signature of plastic flow inside the Earth. Its character depends on the properties of Earth-forming minerals. Simulations have provided a new insight that leads to a more consistent picture of the dynamics of our planet. According to seismic observations, the lowermost 150 km of the Earth’s mantle, known as the D"layer, possess many unusual properties. Many of these anomalies were explained by the properties of post-perovskite (Mg,Fe)SiO3, the dominant mineral of the D"layer. Still, it remained difficult to explain the observed strong seismic anisotropy of the D"layer. Now, thanks to metadynamics, a novel simulation methodology, ETH researcher Artem R. Oganov and colleagues have explained these seismic observations. They came up with an unexpected mechanism of plastic deformation of post-perovskite involving the formation of nanoscale slices of the lower-pressure perovskite structure along the (110) planes of post-perovskite. The ETH researchers could show that this mechanism fully explains the observed seismic anisotropy and some geophysical observations are consistent only with this mechanism.

New minerals in the Earth’s mantle


Structures containing slices of the perovskite and post-perovskite structures are not only a result of plastic deformation. Researchers have predicted a whole infinite family of minerals of the same composition, (Mg,Fe)SiO3, built of alternating nanoscale slices of the perovskite and post-perovskite structures. According to quantummechanical calculations of ETH researcher Artem R. Oganov and colleagues, such unusual minerals could become important stable minerals in the Earth’s mantle. Several research groups are now trying to synthesize these predicted minerals. If successful, these attempts will lead to a new mineralogical model of the Earth’s interior. The research results have been published in the end of 2005 in "Nature".

For more information and pictures:
Prof. Artem R. Oganov
ETH Zurich, Laboratory of Crystallography
Phone +4 +41(0)44 632 37 52 or +41(0)43 300 18 73
E-Mail a.oganov@mat.ethz.ch

Anke Poiger | idw
Further information:
http://www.crystal.mat.ethz.ch/research/theory_proj
http://www.nature.com/nature/journal/v438/n7071/full/nature04439.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>