Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystallographers explain seismic anisotropy of Earth’s D’’layer

12.05.2006


ETH researchers discovered a very unusual mechanism of plastic deformation in the Earth’s mantle. Furthermore, they have predicted a new family of mantle minerals. These discoveries shed new light on the plastic flow of mantle rocks inside our planet - the process that controls plate tectonics and the associated earthquakes, volcanism, and continental drift.



Plastic flow in the Earth’s mantle is the microscopic process behind plate tectonics and the associated continental drift, volcanism and earthquakes. Seismic anisotropy is the main signature of plastic flow inside the Earth. Its character depends on the properties of Earth-forming minerals. Simulations have provided a new insight that leads to a more consistent picture of the dynamics of our planet. According to seismic observations, the lowermost 150 km of the Earth’s mantle, known as the D"layer, possess many unusual properties. Many of these anomalies were explained by the properties of post-perovskite (Mg,Fe)SiO3, the dominant mineral of the D"layer. Still, it remained difficult to explain the observed strong seismic anisotropy of the D"layer. Now, thanks to metadynamics, a novel simulation methodology, ETH researcher Artem R. Oganov and colleagues have explained these seismic observations. They came up with an unexpected mechanism of plastic deformation of post-perovskite involving the formation of nanoscale slices of the lower-pressure perovskite structure along the (110) planes of post-perovskite. The ETH researchers could show that this mechanism fully explains the observed seismic anisotropy and some geophysical observations are consistent only with this mechanism.

New minerals in the Earth’s mantle


Structures containing slices of the perovskite and post-perovskite structures are not only a result of plastic deformation. Researchers have predicted a whole infinite family of minerals of the same composition, (Mg,Fe)SiO3, built of alternating nanoscale slices of the perovskite and post-perovskite structures. According to quantummechanical calculations of ETH researcher Artem R. Oganov and colleagues, such unusual minerals could become important stable minerals in the Earth’s mantle. Several research groups are now trying to synthesize these predicted minerals. If successful, these attempts will lead to a new mineralogical model of the Earth’s interior. The research results have been published in the end of 2005 in "Nature".

For more information and pictures:
Prof. Artem R. Oganov
ETH Zurich, Laboratory of Crystallography
Phone +4 +41(0)44 632 37 52 or +41(0)43 300 18 73
E-Mail a.oganov@mat.ethz.ch

Anke Poiger | idw
Further information:
http://www.crystal.mat.ethz.ch/research/theory_proj
http://www.nature.com/nature/journal/v438/n7071/full/nature04439.html

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>