Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tibet Provides Passage for Chemicals to Reach the Stratosphere

11.05.2006


NASA and university researchers have found that thunderstorms over Tibet provide a main pathway for water vapor and chemicals to travel from the lower atmosphere, where human activity directly affects atmospheric composition, into the stratosphere, where the protective ozone layer resides.


A trio of NASA satellites observe in synchrony the vertical structures of thunderstorms (lower track) and their influences on ice clouds (color shades), water vapor (contours) and pollutants just above Earth’s lower atmosphere (higher track). Image courtesy of Rong Fu, Cinda Gillilan, Jonathan H. Jiang and Brian Knosp.



Learning how water vapor reaches the stratosphere can help improve climate prediction models. Similarly, understanding the pathways that ozone-depleting chemicals can take to reach the stratosphere is essential for understanding future threats to the ozone layer, which shields Earth from the sun’s harmful ultraviolet rays.

Researchers from the Georgia Institute of Technology, Atlanta; NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; and the University of Edinburgh, Scotland, performed their analysis using data from the Microwave Limb Sounder instrument on NASA’s Aura spacecraft, combined with data from NASA’s Aqua and Tropical Rainfall Measuring Missions.


The team collected more than 1,000 measurements of high concentrations of water vapor in the stratosphere over the Tibetan Plateau and the Asian monsoon region. The measurements were collected during August 2004 and August 2005, during the height of monsoon season. Through the use of wind data and NASA atmospheric models, they found the water vapor originated over Tibet, just north of the Himalayan mountain range.

The team also found that even though more thunderstorms occurred over India, the storms over Tibet transported nearly three times more water vapor into the lower stratosphere than the more frequent thunderstorms that occur over India.

"This study shows that thunderstorms over Tibet are mainly responsible for the large amount of water vapor entering the stratosphere," said Dr. Rong Fu, associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences, who led the study. "The rainfall may not be as frequent over Tibet as over the Indian monsoon area, but because Tibet is at a much higher elevation than India, the storms over Tibet are strong and penetrate very high, and send water vapor right into the stratosphere."

The study also found that the same pathway is responsible for transporting carbon monoxide, an indicator of air pollution, into the upper atmosphere.

"There’s almost no carbon monoxide production in Tibet, so it’s widely believed that carbon monoxide is transported to the tropopause over Southeast Asia and the Indian subcontinent,” Fu said. The tropopause divides the lower atmosphere from the stratosphere, and is located at an altitude of about 18 kilometers (11 miles) above Earth over the tropics and Tibet.

Fu added, "Our study finds thunderstorms over Tibet transport as much carbon monoxide to the lower stratosphere as do those over India. When long-lived pollutants are transported out of the lower atmosphere, they can move rapidly. Pollutants from Asia, for example, can wind up on the other side of the world."

The findings are published in the Proceedings of the National Academy of Sciences.

Aura, Aqua and the Tropical Rainfall Measuring Mission are part of the NASA-centered international Earth Observing System, and are managed by NASA’s Goddard Space Flight Center, Greenbelt, Md. Aura’s Microwave Limb Sounder was built by JPL.

For more information on the Microwave Limb Sounder and Aura, visit: http://mls.jpl.nasa.gov and http://aura.gsfc.nasa.gov .

For information on Aqua and the Tropical Rainfall Measuring Mission, visit: http://aqua.nasa.gov/ and http://trmm.gsfc.nasa.gov/ .

JPL is managed for NASA by the California Institute of Technology.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>