Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sri Lanka water supply still suffers effects of 2004 tsunami

09.05.2006


Sri Lanka’s coastal drinking water supply continues to suffer the effects of the December 2004 tsunami, which caused major death and destruction in the region. Much of the island nation’s coastal area relies on wells, usually hand dug and relatively shallow. Some 40,000 such wells, each typically serving several families, were destroyed or contaminated by the tsunami. The continued sustainability of the aquifers that supply such wells is in doubt, due to continued saltwater contamination, erosion of beaches, and other human impacts, such as sand mining, increased pumping, and pollution, according to an international team of scientists and engineers.



The 14-member team from the United States, Sri Lanka, and Denmark, reports its findings in a paper scheduled for publication on 9 May in the American Geophysical Union journal Water Resources Research. During investigations in Sri Lanka from February through September 2005, they found that the tsunami had affected coastal drinking water sources in several ways.

First, the tsunami itself, which reached up to 1.5 kilometers [0.9 miles] inland, poured seawater, along with other contaminants, directly into the open dug wells, rendering those that were not destroyed unusable. In some areas, as many as four large tsunami waves struck, with the second in the series often the largest. Aside from contamination of wells, large quantities of seawater penetrated from the flooded surface of the land through porous layers below and into the aquifer.


Further, efforts to restore wells by pumping out seawater were sometimes apparently counterproductive, as excessive pumping may have allowed more seawater to enter the aquifer from below. This pumping also caused many wells to collapse, as their walls were not reinforced. Finally, contaminated water that was pumped out of wells was often discharged in places that permitted contaminants to seep back into the aquifer and again into the wells.

The researchers, led by Prof. Tissa Illangasekare of the Center for Experimental Study of Subsurface Environmental Processes, located at the Colorado School of Mines, found that one anticipated consequence of the disaster did not materialize. They write that fears of outbreaks of waterborne disease were not realized, due to public awareness of the need to disinfect wells and to practice good personal and food hygiene.

Although some of the affected coastal aquifers in Sri Lanka are composed of ancient limestone deposits, especially in the north of the country, most coastal groundwater is stored in sandy aquifers that are replenished by rainwater, especially during the October-to- February monsoons. This recharge has been slow in many of the most-affected areas, as they did not receive substantial rainfall for almost a year. The December 2005 monsoon rains were substantial, but the researchers say it will take several more monsoon seasons-- they do not know how many--for the aquifers to recover. In collaboration with the American, Danish, and Sri Lankan scientists, a group of researchers at the International Water Management Institute based in Sri Lanka is currently conducting long-term monitoring studies at selected sites.

The researchers say that since March 2005, salinity levels have declined slowly, if at all, in many of the wells that continued to be pumped. They note that planning is underway to provide piped water to many coastal villages, to supplant the individual, and vulnerable, open dug wells. Other social responses include plans for expansion of centralized sewage collection, proposed setbacks for housing along coastlines, and the use of new modeling techniques for integrated management of surface water and groundwater for sustainable water resources.

Around the world, devastating floods can be caused by more than tsunamis, the researchers note, including storm surges, hurricanes or cyclones, and rising sea level. They urge hydrologists to participate in the planning of emergency planning procedures that could greatly reduce human suffering. Documenting the hydrologic impacts of such disasters is, they say, the first step toward developing internationally recognized emergency guidelines for treating sources of contaminated water supplies and for long-term and planning tools for managing coastal groundwater in areas affected by seawater inundation.

The opportunity the group of scientists received to visit the site to observe damage and after-effects of the tsunami and to interact with local scientists will help to develop long-term research collaborations and educational programs to address critical water supply issues in the region, they say. The team has developed a number of recommendations, which they will present to the Sri Lankan government, to help develop local expertise and capacity- building in areas of modeling, data management, and subsurface characterization for integrated water management in the affected regions. The authors say they are continuing to work together to address Sri Lanka’s water needs.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>