Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Slowdown in tropical Pacific flow pinned on climate change


The vast loop of winds that drives climate and ocean behavior across the tropical Pacific has weakened by 3.5% since the mid-1800s, and it may weaken another 10% by 2100, according to a study led by University Corporation for Atmospheric Research (UCAR) scientist Gabriel Vecchi. The study indicates that the only plausible explanation for the slowdown is human-induced climate change. The findings appear in the May 4 issue of Nature.

The Walker circulation, which spans almost half the circumference of Earth, pushes the Pacific Ocean’s trade winds from east to west, generates massive rains near Indonesia, and nourishes marine life across the equatorial Pacific and off the South American coast. Changes in the circulation, which varies in tandem with El Niño and La Niña events, can have far-reaching effects.

"The Walker circulation is fundamental to climate across the globe," says Vecchi.

In their paper, "Weakening of Tropical Pacific Atmospheric Circulation Due to Anthropogenic Forcing," the authors used observations as well as state-of-the-art computer climate model simulations to verify the slowdown and determine whether the cause is human-induced climate change. The work was performed at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), where Vecchi is stationed through the UCAR Visiting Scientist Programs. His coauthors include Brian Soden (University of Miami) and the GFDL team of Andrew Wittenberg, Isaac Held, Ants Leetmaa, and Matthew Harrison.

The Walker circulation takes the shape of a loop with rising air in the western tropical Pacific, sinking air in the eastern tropical Pacific, west-to-east winds a few miles high, and east-to-west trade winds at the surface. The trade winds also steer ocean currents. Any drop in winds produces an even larger reduction in wind-forced ocean flow--roughly twice as much in percentage terms for both the observed and projected changes, says Vecchi.

"This could have important effects on ocean ecosystems," Vecchi says. "The ocean currents driven by the trade winds supply vital nutrients to the near-surface ocean ecosystems across the equatorial Pacific, which is a major fishing region."

Several theoretical studies have shown that an increase in greenhouse gases should produce a weakening of the Walker circulation. As temperatures rise and more water evaporates from the ocean, water vapor in the lower atmosphere increases rapidly. But physical processes prevent precipitation from increasing as quickly as water vapor. Since the amount of water vapor brought to the upper atmosphere must remain in balance with precipitation, the rate at which moist air is brought from the lower to the upper atmosphere slows down to compensate. This leads to a slowing of the atmospheric circulation.

Based on observations since the mid-1800s, the paper reports a 3.5% slowdown in the Walker circulation, which corresponds closely to the number predicted by theory. To establish whether human-induced climate change is at work, Vecchi and colleagues analyzed 11 simulations using the latest version of the GFDL climate model spanning the period 1861 to 2000. Some of the simulations included the observed increase in greenhouse gases; others included just the natural climate-altering factors of volcanic eruptions and solar variations. Only the simulations that included an increase in greenhouse gases showed the Walker circulation slowing, and they did so at a rate consistent with the observations.

Based on the theoretical considerations, and extrapolating from their 1861-2000 analysis as well as from other simulations for the 21st century, the authors conclude that by 2100 the Walker circulation could slow by an additional 10%. This means the steering of ocean flow by trade winds could decrease by close to 20%.

Simulation results depend on the assumptions and conditions within different models. However, the agreement of theory, observations, and models for the past 150 years lends support to this outlook, say the authors.

-----What about El Nino?-----

The study sends mixed signals on the future of the El Nino–Southern Oscillation--the system of ocean-atmosphere linkages that produces the worldwide weather of El Nino and its counterpart, La Nina.

"The circulation has been tending to a more El Nino-like state since the 1860s," says Vecchi. "However, the dynamics involved here are distinct from those of El Nino."

UCAR is a consortium of 69 universities offering Ph.D.s in the atmospheric and related sciences. The Visiting Scientist Programs, which place UCAR scientists in research settings across the country, are managed by the UCAR Office of Programs.

Anatta | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>