Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment on Monsoon Season Rainfall Lives Up to its ’Name’

03.05.2006


For many people, a monsoon brings to mind images of intense rainfall and high winds in faraway places. Actually, monsoons occur all over the globe, including North America. These seasonal reversals of winds trigger dramatic changes in rainfall and other weather events within a short period of time.



The North American monsoon affects large areas of the southwestern United States and northwestern Mexico. This rainy season brings with it much more than torrential downpours from July to mid-September. The North American monsoon is one of the key natural events that defines the warm-season climate over the region. It is important that researchers better understand the key physical processes at play that determine the life cycle of the monsoon. That knowledge should make it possible to forecast warm-season rainfall over North America more accurately.

Throughout the summer of 2004, researchers from NASA and other U.S. government agencies led by the National Oceanic and Atmospheric Administration (NOAA) joined an international team of scientists from Mexico, Belize and Costa Rica to carry out an intensive field campaign as part of the North American Monsoon Experiment (NAME). NAME is a study aimed at improving the ability to observe and simulate monsoons over North America. The early findings from NAME were published in a recent issue of the Bulletin of the American Meteorological Society.


Image to left: This satellite image from the National Oceanic and Atmospheric Adminstration’s Geostationary Operational Environmental Satellite (GOES) shows rainfall during the beginning of monsoon season in Mexico. This is an infrared image, taken the night of June 23, 1998. The red area depicted shows a cold area, indicating a high cloud top (50,000 feet high), indicating a strong thunderstorm. Click image to enlarge. Credit: NOAA

"This was our first chance to gather results from such intensive observations of the North American monsoon season, using sensitive instruments from 20 different vantage locations like NASA satellites, aircraft, research ships, radar, balloons, buoys, and ground stations," said Siegfried Schubert, a meteorologist at NASA’s Goddard Space Flight Center, Greenbelt, Md., and member of the NAME science team. "The results should put us on a fast track to improving the accuracy of our predictions, and the lessons we learn here can be applied to many other parts of the world."

During the NAME mission, scientists took a large and frequent number of measurements of winds, humidity, soil, ocean heat fluctuations, and rainfall accumulation over six weeks using several instruments mounted in platforms in the sky, space, ocean, and on the ground. The team will combine this information with other measurements, including those from the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) on NASA’s Aqua satellite and the TRMM Microwave Imager (TMI) on NASA’s Tropical Rainfall Measurement Mission (TRMM) satellite.

"By 2008, we should have enough analysis from observations and the global and regional models created from those 2004 observations to make it clear whether our modeling is far closer to what we’ve been after," said Myong-In Lee, a research scientist at Goddard and member of the NAME science team.

"Our success in improving monsoon forecasting can have significant socio-economic impact," said Jim Laver, Director of NOAA’s Climate Prediction Center, Camp Springs, Md. "Knowledge gained from the NAME observations has the potential to increase society’s ability to plan for and respond to monsoon-related extreme events such as flooding rains, dust storms, hail and dry lightning, and help protect lives and property."

NAME is an international effort involving 30 organizations: NASA, NOAA, the U.S. Department of Agriculture, the National Science Foundation, U.S. and international universities, and several Mexican scientific organizations.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/environment/rainfall_name.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>