Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One-of-a-kind meteorite unveiled

25.04.2006


The depths of space are much closer to home following the University of Alberta’s acquisition of a meteorite that is the only one of its kind known to exist on Earth! What makes it so rare? The meteorite is ’pristine’ – that is, still frozen and uncontaminated – and so provides an invaluable preserved record of material from when the solar system formed 4.57 billion years ago.



The Tagish Lake Meteorite is carbonaceous chondrite and, as such, represents primitive material from which the solar system formed. The meteorite is rich in pre-solar grains – grains from other stars that were present near our solar system when it formed. The meteorite contains primitive molecules that are the building blocks of the components necessary for life. The pristine state of the meteorite makes it especially important for scientific research purposes; it presents an unprecedented opportunity to look for extraterrestrial ices.

The University of Alberta, through the Department of Museums and Collections Services and the Department of Earth and Atmospheric Sciences, led a consortium of partners that, together, acquired the pristine samples for mutual research and heritage interests. These partners include the Department of Canadian Heritage, the Royal Ontario Museum, Natural Resources Canada, and the Canadian Space Agency.


Dr. Christopher Herd, the Curator of the University of Alberta Meteorite Collection, will lead future research on the University’s approximately 650 grams of this unique extraterrestrial rock.

"What’s fascinating about the Tagish Lake Meteorite is that it enables us to probe the farthest reaches of our solar system by studying material that has come to us,’ noted Dr. Herd, a professor of Earth and Atmospheric Sciences at the University of Alberta. The study of the meteorite has the potential for revolutionizing our understanding of the formation of the solar system. The meteorite fell on the frozen surface of Tagish Lake, northern BC, in Canada on January 18, 2000.

Beverly Betkowski | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>