Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of rainfall reaches to roots of mountains

24.04.2006


Human-induced climate change could ultimately influence deep Earth processes


Diagram showing plate movements due to erosion, Image: Russell Pysklywec


Trace of Alpine Fault along western margin of Southern Alps, Image: Russell Pysklywec



The erosion caused by rainfall directly affects the movement of continental plates beneath mountain ranges, says a University of Toronto geophysicist — the first time science has raised the possibility that human-induced climate change could affect the deep workings of the planet.

“In geology, we have this idea that erosion’s going to affect merely the surface,” says Russell Pysklywec, a professor of geology who creates computer models where he can control how a range of natural processes can create and modify mountains over millions of years. Pysklywec conducts field research in the Southern Alps of New Zealand, where the mountains are high and geologically “young.” He found that when mountains are exposed to New Zealand-type rainfall (which causes one centimetre of erosion per year) compared to southern California-type rainfall (which erodes one-tenth of a centimetre or less), it profoundly changes the behaviour of the tectonic plates beneath the mountains. “These are tiny, tiny changes on the surface, but integrating them over geologic time scales affects the roots of the mountains, as opposed to just the top of them,” says Pysklywec. “It goes right down to the mantle thermal engine — the thing that’s actually driving plate tectonics. It’s fairly surprising — it hasn’t been shown before.”


It takes a supercomputer several days to run one of Pysklywec’s models, which reveal the inner workings of the Earth to hundreds of kilometres below the surface, where the temperature can reach 1,500 degrees Celsius. In extreme conditions, he says, the erosion effect can even cause the underlying plate to reverse direction. “As a concept, imagine blanketing the European Alps with a huge network of ordinary garden sprinklers. The results suggest that the subtle surface weathering caused by the light watering have the potential to shift the tectonic plates, although you would have to keep the water on for several million years.” In the long run, says Pysklywec, it raises the question of whether human activity, which is affecting climate, could ultimately influence deep Earth processes. “That’s what these findings suggest,” he says. “We’re talking millions of years, but it’s one more example of how all these natural systems are interrelated.”

The study appears on the cover of the April issue of Geology and was funded by the Natural Sciences and Engineering Research Council of Canada and Lithoprobe.

Contact:

Russell Pysklywec, Department of Geology, University of Toronto,; e-mail:russ@geology.utoronto.ca, 416-978-4852

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>