Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists penetrate fossil magma chamber beneath intact ocean crust -- achieving scientific ’first’

24.04.2006


PACIFIC OCEAN, approximately 800 km west of Costa Rica¡ªAn international team of scientists aboard the research drilling ship JOIDES Resolution has¡--for the first time¡--recovered black rocks known as gabbros from intact ocean crust. Supported by the Integrated Ocean Drilling Program (IODP), the scientists drilled through the volcanic rock that forms the Earth’s crust to reach a fossil magma chamber lying 1.4 kilometers beneath the seafloor.



"By sampling a complete section of the upper oceanic crust, we’ve achieved a goal scientists have pursued for over 40 years, since the days of Project MoHole," says Damon Teagle, National Oceanography Centre, University of Southampton, UK, and co-chief scientist of this drilling expedition. "Our accomplishment will ultimately help science answer the important question, ’how is new ocean crust formed?’"

Formation of ocean crust is a key process in the cycle of plate tectonics; it constantly ’repaves’ the Earth’s surface, builds mountains, and leads to earthquakes and volcanoes. Project MoHole, begun in the 1950s, aimed to drill all the way through the ocean crust, into the Earth’s mantle.


Jeffrey Alt of the University of Michigan and co-chief scientist on an earlier leg of this mission, explains that "having this sample from the deep fossil magma chamber allows us to compare its composition to the overlying lavas. It will help explain," he says, "whether ocean crust, which is about six- to seven- kilometers thick, is formed from one high-level magma chamber, or from a series of stacked magma lenses." He emphasizes that "the size and geometry of the melt lens affects not only the composition and thermal structure of the ocean crust, but also the vigor of hydrothermal circulation of seawater through the crust." Alt states that such systems lead to spectacular black-smoker vents--modern analogs of ancient copper deposits and deep-ocean oases that support exotic life.

IODP Program Director James Allan at the U.S. National Science Foundation, which co-funds IODP research with Japan, further clarifies what the expedition’s discovery represents. "These results," he says, "coming from the structural heart of Pacific crust, confirm ideas from seismologic interpretation about how fast-spreading oceanic crust is built. They refine our understanding of the relationship between seismic velocity and crustal rock composition, and open new vistas for investigating the origin of lower oceanic crust, best addressed by deeper drilling." NSF and Japan each provide a scientific drilling vessel to IODP for research teams.

Geophysical theories have long projected that oceanic magma chambers freeze to form coarse-grained, black rocks known as gabbros, commonly used for facing stones on buildings and kitchen countertops. Although gabbros have been sampled elsewhere in the oceans, where faulting and tectonic movement have brought them closer to the seafloor, this is the first time that gabbros have been recovered from intact ocean crust.

"Drilling this deep hole in the eastern Pacific is a rare opportunity to calibrate remote geophysical measurements such as seismic travel time or magnetic field with direct observations of real rocks," says geophysicist Doug Wilson, University of California, Santa Barbara. Co-chief scientist on an earlier expedition to the same drilling site, Wilson was instrumental in helping to select the site drilled. His contributed to the research mission thorough study of the ocean crust’s magnetic properties.

"Finding the right place to drill was probably key to our success," Wilson asserts. The research team identified a 15-million-year-old region of the Pacific Ocean that formed when the East Pacific Rise was spreading at a ’superfast’ rate (more than 200 millimeters per year), faster than any mid-ocean ridge on Earth today. "We planned to exploit a partially tested geophysical observation that magma chambers should be closest to the Earth’s surface, in crust formed at the fastest spreading rate. If that theory were to be correct," reasoned Wilson, "then we should only need to drill a relatively shallow hole--compared to anywhere else--to reach gabbros." Wilson and colleagues proved the theory correct.

Following three years of research and multiple trips to the site in question, the borehole that rendered the magma chamber is now more than 1,500 meters deep; it took nearly five months at sea to drill. Twenty-five hardened steel and tungsten carbide drill bits were used before the scientists’ work was complete. The rocks directly above the frozen magma chamber were extremely hard because they had been baked by the underlying magmas, much like tempered steel.

IODP scientists want to return to the site of the unearthed magma chamber to explore deeper, in hopes of finding more secrets hidden deep within the ocean’s crust.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>