Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Young Mars Most Likely to Support Life, New Mineral History Shows

24.04.2006


A Martian Mineral History
The large dark area right of center on the hemisphere view of Mars is Syrtis Major. The map shows the presence of water-bearing clay minerals identified by OMEGA data. Blue indicates small amounts and orange-red indicates large amounts.


An international team of scientists, including Brown University geologist John Mustard, has created the most comprehensive mineral record of Mars to date. Using data from the European Space Agency’s Mars Express mission, the record shows three distinct geological eras on the Red Planet, with the earliest marked by the presence of water. Results are published in Science.

Mars started out relatively wet and temperate, underwent a major climate shift, and evolved into a cold, dry place strewn with acidic rock – less than ideal conditions for supporting life.

This is the finding of an international team of scientists who have created the most comprehensive mineral history of Mars, a history closely linked to the presence of liquid water on the planet. According to the mineral record, created with Mars Express mission data and detailed in Science, Mars would only have been hospitable to life in its infancy.



“Starting about 3.5 billion years ago, conditions on Mars became increasingly dry and acidic – not a pleasant place for any form of life, even a microbe,” said John Mustard, a Brown University geologist and a primary author of the Science paper.

If any living organisms had formed on Mars, that evidence would likely be found in clay-rich rocks and soil north of the Syrtis Major volcanic plateau, in Nili Fossae and in the Marwth Vallis Regions, the team reports.

These areas make compelling targets for future lander missions, according to Mustard, a co-investigator on the Mars Express and Mars Reconnaissance Orbiter missions. In the meantime, the Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, aboard the Mars Reconnaissance Orbiter, will in September begin beaming mineralogical data on these clay-rich regions. The images will be 20 times more precise compared with those captured by Mars Express.

“I’m eager to get the CRISM data and explore the deposits found by OMEGA, as well as discover new sites and minerals,” Mustard said. “OMEGA shows that some of the most interesting sites are small – and CRISM is designed to find and characterize small deposits.”

Jean-Pierre Bibring, an astrophysicist from the University of Paris, led the team of scientists from France, Italy, Russia, Germany and the United States. The investigators pieced together the mineral history using data from Mars Express, a mission launched by the European Space Agency. An instrument aboard the spacecraft dubbed OMEGA – short for Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité – determines mineral composition from visible and infrared light reflected from the Red Planet’s surface. The team used two years worth of data from OMEGA, which has mapped more than 90 percent of the planet’s surface.

The team found three distinct geological eras on Mars:

  • The first era lasted from the birth of Mars, about 4.6 billion years ago, until about 4 billion years ago. The oldest rock – exposed by erosion, impact or faulting – shows the presence of clay minerals. These minerals, such as chamosite and nontronite, need abundant water, moderate temperatures and low acidity to form.

  • The second era lasted from between 4 and 3.5 billion years ago. Minerals made during this era, such as gypsum and grey hematite, were found in Meridiani and in Valles Marineris. These rocks, traced by sulfates, mark a dramatic shift from a moist and alkaline environment to a dry, acidic one. The shift, the team concludes, was likely caused by massive volcanic eruptions that spewed sulfur into the atmosphere, which then rained back down on the planet’s surface.

  • The third era began between 3.2 billion and 3.5 billion years ago and continues to the present. Minerals during this period were not formed with, or altered by, liquid water. These iron-rich minerals, dominated by ferric oxides, were found across most of the planet and reflect the cold, dry conditions that persist on Mars.

The team’s analysis led them to draw an intriguing conclusion: Liquid water didn’t make the Red Planet red. Instead, the team states, Mars most likely gets its glow from tiny grains of red hematite or possibly maghemite, both riddled with iron.

The Centre National d’Etudes Spatiales, Agenzia Spatiale Italiana and the Russian Space Agency funded the OMEGA instrument. In the United States, NASA supported OMEGA data analysis.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>