Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Young Mars Most Likely to Support Life, New Mineral History Shows

24.04.2006


A Martian Mineral History
The large dark area right of center on the hemisphere view of Mars is Syrtis Major. The map shows the presence of water-bearing clay minerals identified by OMEGA data. Blue indicates small amounts and orange-red indicates large amounts.


An international team of scientists, including Brown University geologist John Mustard, has created the most comprehensive mineral record of Mars to date. Using data from the European Space Agency’s Mars Express mission, the record shows three distinct geological eras on the Red Planet, with the earliest marked by the presence of water. Results are published in Science.

Mars started out relatively wet and temperate, underwent a major climate shift, and evolved into a cold, dry place strewn with acidic rock – less than ideal conditions for supporting life.

This is the finding of an international team of scientists who have created the most comprehensive mineral history of Mars, a history closely linked to the presence of liquid water on the planet. According to the mineral record, created with Mars Express mission data and detailed in Science, Mars would only have been hospitable to life in its infancy.



“Starting about 3.5 billion years ago, conditions on Mars became increasingly dry and acidic – not a pleasant place for any form of life, even a microbe,” said John Mustard, a Brown University geologist and a primary author of the Science paper.

If any living organisms had formed on Mars, that evidence would likely be found in clay-rich rocks and soil north of the Syrtis Major volcanic plateau, in Nili Fossae and in the Marwth Vallis Regions, the team reports.

These areas make compelling targets for future lander missions, according to Mustard, a co-investigator on the Mars Express and Mars Reconnaissance Orbiter missions. In the meantime, the Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, aboard the Mars Reconnaissance Orbiter, will in September begin beaming mineralogical data on these clay-rich regions. The images will be 20 times more precise compared with those captured by Mars Express.

“I’m eager to get the CRISM data and explore the deposits found by OMEGA, as well as discover new sites and minerals,” Mustard said. “OMEGA shows that some of the most interesting sites are small – and CRISM is designed to find and characterize small deposits.”

Jean-Pierre Bibring, an astrophysicist from the University of Paris, led the team of scientists from France, Italy, Russia, Germany and the United States. The investigators pieced together the mineral history using data from Mars Express, a mission launched by the European Space Agency. An instrument aboard the spacecraft dubbed OMEGA – short for Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité – determines mineral composition from visible and infrared light reflected from the Red Planet’s surface. The team used two years worth of data from OMEGA, which has mapped more than 90 percent of the planet’s surface.

The team found three distinct geological eras on Mars:

  • The first era lasted from the birth of Mars, about 4.6 billion years ago, until about 4 billion years ago. The oldest rock – exposed by erosion, impact or faulting – shows the presence of clay minerals. These minerals, such as chamosite and nontronite, need abundant water, moderate temperatures and low acidity to form.

  • The second era lasted from between 4 and 3.5 billion years ago. Minerals made during this era, such as gypsum and grey hematite, were found in Meridiani and in Valles Marineris. These rocks, traced by sulfates, mark a dramatic shift from a moist and alkaline environment to a dry, acidic one. The shift, the team concludes, was likely caused by massive volcanic eruptions that spewed sulfur into the atmosphere, which then rained back down on the planet’s surface.

  • The third era began between 3.2 billion and 3.5 billion years ago and continues to the present. Minerals during this period were not formed with, or altered by, liquid water. These iron-rich minerals, dominated by ferric oxides, were found across most of the planet and reflect the cold, dry conditions that persist on Mars.

The team’s analysis led them to draw an intriguing conclusion: Liquid water didn’t make the Red Planet red. Instead, the team states, Mars most likely gets its glow from tiny grains of red hematite or possibly maghemite, both riddled with iron.

The Centre National d’Etudes Spatiales, Agenzia Spatiale Italiana and the Russian Space Agency funded the OMEGA instrument. In the United States, NASA supported OMEGA data analysis.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>