Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists: Opening of passage may be tied to Antarctic cooling

21.04.2006


Ancient fish teeth are yielding clues about when Antarctica became the icy continent it is today, highlighting how ocean currents affect climate change.



University of Florida geologists have used a rare element found in tiny fish teeth gathered from miles below the ocean surface to date the opening of a passage at the bottom of the globe between the Atlantic and Pacific. The opening, which occurred millions of years ago in a much warmer era, allowed the formation of an ocean current around the pole. That event preceded – and may even have brought about -- Antarctica’s transformation from a forested continent to an icy moonscape.

"We’re saying we now have a date for the opening of the Drake Passage that looks like it’s early enough that it may have contributed to the cooling," said Ellen Eckels Martin, a UF associate professor of geology.


Martin and H.D. Scher, a UF doctoral graduate now at the University of Rochester in New York, co-authored a paper on the research set to appear Friday in the journal Science.

Scientists have long puzzled over the rapid cooling that seemed to sweep over Antarctica more than 30 million years ago, replacing boreal pine forests with ice and snow. The cooling occurred in a very warm era when levels of carbon dioxide, the gas responsible for the greenhouse warming effect, were three to four times today’s levels.

Theorists had suggested the plummeting temperatures could be related to the opening of the Drake Passage, a connection between the Atlantic and Pacific named after Sir Francis Drake, the English captain who circumnavigated the globe in the 16th century. But there has been a longstanding debate over when that passage opened. That’s a key point because Antarctica is known to have been covered with ice by about 33.6 million years ago, meaning the circumpolar current would have had to be established before that event if it could be considered a cause of the cooling.

Estimates for the passage’s opening have ranged from 15 million years to 49 million years ago. Martin and Scher’s research confirms the older dates.

The scientists’ source: neodymium isotopes retrieved from fish teeth the size of grains of sand – teeth themselves retrieved from sediment cores recovered from the deep ocean bottom more than two miles beneath the surface.

Martin said neodymium has a chemical signature that varies depending on whether it came from the Atlantic or Pacific. Once the element erodes from rocks into the ocean, it becomes trapped in clays and minerals, which settle on the seabed. That means scientists can use it to determine the origin and movement of ocean currents, Martin said.

Fish teeth are composed of a mineral called apatite, which takes up neodymium on the seafloor. This is why the UF researchers focused on the teeth.

The geologists obtained the teeth from sedimentary cores retrieved from the South Atlantic ocean. The sediments were dated to more than 40 million years ago. Measurements using a technique called thermal ionization mass spectrometry revealed the teeth neodymium had a signature of the Pacific, indicating at least a surface connection between the oceans.

The presence of neodymium with a Pacific signature in the deep Atlantic suggests that Pacific surface waters flowed into the South Atlantic, where they cooled and sank.

Martin said the opening of the Drake Passage could have precipitated the plunge in temperatures because the newly developed circumpolar current would have isolated Antarctica from warm subtropical water carrying heat from the tropics. In addition, the circumpolar current sets up conditions leading to upwelling of cold, nutrient-rich water. This in turn may have spurred the growth of algae and higher forms of biological life, which consumed carbon dioxide, reducing levels and contributing to cooling the continent’s climate, she said.

The UF researchers "proved that the formation of early ocean circulation patterns coincided with, and possibly caused, the initial buildup of ice in Antarctica," said Gabriel Filippelli, professor and chairman of the department of earth sciences at Indiana University-Purdue University Indianapolis.

Filippelli said the paper shows that ocean currents can have a big impact on the West Antarctic Ice Sheet, which would raise sea levels substantially if it were to melt. Some evidence already shows the sheet is becoming less stable due to warmer air and surface water temperatures, he said. "Circulation patterns and surface warmth of waters around Antarctica can be critical factors in the stability of the West Antarctic Ice Sheet, as they were in the buildup of ice around 40 million years ago," he said.

Ellen Eckels Martin | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>