Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps-led Project Achieves Milestone in Analyzing Pollutants Dimming the Atmosphere

19.04.2006


Scripps-led Project Achieves Milestone in Analyzing Pollutants Dimming the Atmosphere



Technology behind unmanned aerial vehicles proves successful for flying beneath, above and through clouds to trace pollution particles

A scientific research consortium led by Scripps Institution of Oceanography at the University of California, San Diego, has reached an important milestone in the tracking of pollutants responsible for dimming Earth’s atmosphere.


Scripps Oceanography scientist Veerabhadran Ramanathan reported that instrument-bearing autonomous unmanned aerial vehicles (AUAVs) completed 18 successful data-gathering missions in pollution-filled skies over the Indian Ocean in the vicinity of the Maldives, an island chain nation south of India. During the Maldives AUAV Campaign (MAC), groupings of three aircraft flew in synchronous vertical formation, which allowed onboard instruments to observe conditions below, inside and above clouds simultaneously. Researchers hope the data produced during the flights will reveal in unprecedented detail how pollution particles cause dimining and contribute to the formation of clouds which amplify the dimming caused by the pollution.

Stacked flights with manned aircraft have been attempted, but rarely. The difficulty and cost of assembling and coordinating three similar aircraft have prevented the sort of repeated measurements required to sample clouds adequately.

"Based on MAC’s success it is possible that in five years, hundreds of lightweight AUAVs will be documenting how human beings are polluting the planet and hopefully provide an early warning system for potential environmental disasters in the future," said Ramanathan.

The skies over the Indian Ocean visibly bear the imprint of human activities in South Asia, frequently in the coverage of what are termed atmospheric brown clouds, particulate-laden haze and cumulus clouds that frequently blanket the region. The role that dust and aerosols from industrial, urban and agricultural emissions play in creating such a brown haze is an important variable to researchers who study anthropogenic climate change, specifically how human activities could be changing the planet’s albedo, or reflectivity.

Cloud cover cools Earth’s surface by reflecting solar radiation back into space. In recent years, researchers have come to realize that pollution in the atmosphere and the dimming and cooling it causes could actually be leading scientists to underestimate the true magnitude of global-warming trends observed in recent decades.

Ramanathan has led a consortium of academic and industrial partners in the development of aircraft and integrating them with miniaturized instruments that can obtain aerosol-cloud-solar radiation data in remote regions once considered unobtainable: multi-dimensional portraits of clouds created in polluted environments over periods of several hours. The "Manta" AUAVs, constructed by Tucson, Ariz. firm Advanced Ceramics Research (ACR), represent a feat of miniaturization (an ACR flight team supported Ramanathan’s research by flying more than 100 hours in gathering the atmospheric data).

Each AUAV bears an instrument package that weighs less than five kilograms (11 pounds). The packages developed by the Scripps team include sensors for measuring solar radiation, cloud-drop size and concentrations, particle size and concentrations, turbulence, humidities and temperatures.

Flights took place between March 6 and March 31, taking off from an airport on the island of Hanimaadhoo in the Maldives. Each AUAV tracked a separate component of brown cloud formation. The lowest, flying beneath the cloud, quantified the input of pollution particles and measured quantities of light that penetrated the clouds. The aircraft flying through the cloud measured the cloud’s response to the introduction of particles. The aircraft flying above the cloud measured the amount of sunlight reflected by the clouds into space and the export of particles out of the clouds.

"MAC has demonstrated that lightweight AUAVs and their miniaturized instruments are an effective and inexpensive means of simultaneously sampling clouds in polluted environments from within and from all sides," said Jay Fein, program director in the National Science Foundation’s Division of Atmospheric Sciences. "They will serve as critically important additions to our atmospheric measurement capability in addressing one of the major outstanding issues in climate change science: How does pollution affect cloud microphysical and radiative processes in the context of weather and climate?"

"We are excited about being involved in the study of atmospheric brown cloud affects using cutting edge flight control software we developed in our unmanned aerial vehicles," said Anthony Mulligan, CEO of Advanced Ceramics Research. "Our employees are proud to have provided Scripps scientists a way to further their research and look forward to continue to provide them a low-cost, effective way to gather additional information."
The research was funded by the National Science Foundation, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the G. Unger Vetlesen Foundation and the Alderson Foundation. The researchers also wish to acknowledge the support of the United Nations Environmental Program and the support and cooperation of the Republic of Maldives.

More details of the campaign and Project Atmospheric Brown Clouds, of which MAC is a component, are available at www-c4.ucsd.edu/ProjectABC.

Mario Aguilera | EurekAlert!
Further information:
http://www.pbs.org/wgbh/nova/sun
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>