Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technology that measures sea level, helps predict EL Nino events, improved by new modeling


A paper published today in the American Geophysical Union’s Journal of Geophysical Research-Oceans shows a method to recover valuable data from the primary tool used for measuring global sea level – satellite radar altimetry. Altimeter data are used, among other benefits, to monitor and predict the occurrence of events such as El Niño and La Niña – a coupled ocean-atmosphere phenomena that can alter global weather patterns.

Some six percent of global altimetry measurements are typically discarded because the instrument can’t get accurate readings in areas of ocean calm or “slicks” caused by a lack of wind and waves, or by surface films created by blooms of phytoplankton or oil spills. Because millions of altimeter measurements are made per year, that six percent translates into a huge amount of unused data.

The improvement comes from a modeling technique developed by scientists that should enhance and expand the number of altimeter measurements that NASA can collect – using the Jason-1 satellite – from the equatorial Pacific Ocean where El Niño events originate. Jason-1, launched in 2001, is a joint NASA/Centre National d’Études Spatiales or CNE (the French government space agency) mission.

Says co-author Doug Vandemark, now a radar engineer/oceanographer and research professor at the University of New Hampshire’s Institute for the Study of Earth, Oceans, and Space (EOS), “Every year our altimeters make something like 10 million ocean measurements so being able to recover at least a portion of that six percent gives us better information on sea-surface height. The percentage is much higher than six for calmer equatorial regions such as the Pacific, which tells us about where the bulge of water is that controls the El Niño.”

Picture the Pacific Ocean as a big bathtub. A bulge in the western end – created by warm water and winds – can set off an El Niño event by creating a wave that propagates very quickly along the equator from Asia towards the Americas, eventually inducing large water temperature changes along the coasts of South and North America. When the bulge makes its inevitable and slower return back, that’s a La Niña event.

Says the JGR paper’s lead author, Jean Tournadre of Laboratoire d’Océanographie Saptiale, Institut Français de Recherche pour l’Exploitation de la Mer, “Satellite altimetry has become a standard tool for ocean modeling and climatology studies.” He adds, “Altimeters provide precise measurements of sea-surface topography, the significant wave height, and the small-scale roughness of the sea surface.” Indeed, a radar altimeter can measure sea height down to one centimeter.

Altimetry works by sending 1,800 separate radar pulses per second down towards Earth from a height of some 800 kilometers and recording how long their echoes take to bounce back. The authors’ work with what Vandemark calls “the problematic subset of echoes from very smooth ocean areas” suggests that altimeters may now be able to estimate the spatial extent of these smooth areas as well and to recover more sea level estimates.

Vandemark notes that having more accurate equatorial Pacific Ocean measurements “provides agencies like NASA and NOAA more measurements for El Niño prediction and tracking.” NOAA, the National Oceanic and Atmospheric Administration, is responsible for forecasting El Niño events, just as its National Weather Service is responsible for weather forecasting and warnings.

Radar altimetry has been around for only 15 years and in that time has revolutionized the study of the ocean. Among its other scientific uses, altimetry is also used to monitor the ocean’s circulation patterns, glaciers, predict the strength of hurricanes, and measure river and lake levels worldwide.

To learn more about ocean surface topography from space, visit

David Sims | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>