Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that measures sea level, helps predict EL Nino events, improved by new modeling

13.04.2006


A paper published today in the American Geophysical Union’s Journal of Geophysical Research-Oceans shows a method to recover valuable data from the primary tool used for measuring global sea level – satellite radar altimetry. Altimeter data are used, among other benefits, to monitor and predict the occurrence of events such as El Niño and La Niña – a coupled ocean-atmosphere phenomena that can alter global weather patterns.



Some six percent of global altimetry measurements are typically discarded because the instrument can’t get accurate readings in areas of ocean calm or “slicks” caused by a lack of wind and waves, or by surface films created by blooms of phytoplankton or oil spills. Because millions of altimeter measurements are made per year, that six percent translates into a huge amount of unused data.

The improvement comes from a modeling technique developed by scientists that should enhance and expand the number of altimeter measurements that NASA can collect – using the Jason-1 satellite – from the equatorial Pacific Ocean where El Niño events originate. Jason-1, launched in 2001, is a joint NASA/Centre National d’Études Spatiales or CNE (the French government space agency) mission.


Says co-author Doug Vandemark, now a radar engineer/oceanographer and research professor at the University of New Hampshire’s Institute for the Study of Earth, Oceans, and Space (EOS), “Every year our altimeters make something like 10 million ocean measurements so being able to recover at least a portion of that six percent gives us better information on sea-surface height. The percentage is much higher than six for calmer equatorial regions such as the Pacific, which tells us about where the bulge of water is that controls the El Niño.”

Picture the Pacific Ocean as a big bathtub. A bulge in the western end – created by warm water and winds – can set off an El Niño event by creating a wave that propagates very quickly along the equator from Asia towards the Americas, eventually inducing large water temperature changes along the coasts of South and North America. When the bulge makes its inevitable and slower return back, that’s a La Niña event.

Says the JGR paper’s lead author, Jean Tournadre of Laboratoire d’Océanographie Saptiale, Institut Français de Recherche pour l’Exploitation de la Mer, “Satellite altimetry has become a standard tool for ocean modeling and climatology studies.” He adds, “Altimeters provide precise measurements of sea-surface topography, the significant wave height, and the small-scale roughness of the sea surface.” Indeed, a radar altimeter can measure sea height down to one centimeter.

Altimetry works by sending 1,800 separate radar pulses per second down towards Earth from a height of some 800 kilometers and recording how long their echoes take to bounce back. The authors’ work with what Vandemark calls “the problematic subset of echoes from very smooth ocean areas” suggests that altimeters may now be able to estimate the spatial extent of these smooth areas as well and to recover more sea level estimates.

Vandemark notes that having more accurate equatorial Pacific Ocean measurements “provides agencies like NASA and NOAA more measurements for El Niño prediction and tracking.” NOAA, the National Oceanic and Atmospheric Administration, is responsible for forecasting El Niño events, just as its National Weather Service is responsible for weather forecasting and warnings.

Radar altimetry has been around for only 15 years and in that time has revolutionized the study of the ocean. Among its other scientific uses, altimetry is also used to monitor the ocean’s circulation patterns, glaciers, predict the strength of hurricanes, and measure river and lake levels worldwide.

To learn more about ocean surface topography from space, visit http://sealevel.jpl.nasa.gov.

David Sims | EurekAlert!
Further information:
http://sealevel.jpl.nasa.gov
http://www.unh.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>