Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that measures sea level, helps predict EL Nino events, improved by new modeling

13.04.2006


A paper published today in the American Geophysical Union’s Journal of Geophysical Research-Oceans shows a method to recover valuable data from the primary tool used for measuring global sea level – satellite radar altimetry. Altimeter data are used, among other benefits, to monitor and predict the occurrence of events such as El Niño and La Niña – a coupled ocean-atmosphere phenomena that can alter global weather patterns.



Some six percent of global altimetry measurements are typically discarded because the instrument can’t get accurate readings in areas of ocean calm or “slicks” caused by a lack of wind and waves, or by surface films created by blooms of phytoplankton or oil spills. Because millions of altimeter measurements are made per year, that six percent translates into a huge amount of unused data.

The improvement comes from a modeling technique developed by scientists that should enhance and expand the number of altimeter measurements that NASA can collect – using the Jason-1 satellite – from the equatorial Pacific Ocean where El Niño events originate. Jason-1, launched in 2001, is a joint NASA/Centre National d’Études Spatiales or CNE (the French government space agency) mission.


Says co-author Doug Vandemark, now a radar engineer/oceanographer and research professor at the University of New Hampshire’s Institute for the Study of Earth, Oceans, and Space (EOS), “Every year our altimeters make something like 10 million ocean measurements so being able to recover at least a portion of that six percent gives us better information on sea-surface height. The percentage is much higher than six for calmer equatorial regions such as the Pacific, which tells us about where the bulge of water is that controls the El Niño.”

Picture the Pacific Ocean as a big bathtub. A bulge in the western end – created by warm water and winds – can set off an El Niño event by creating a wave that propagates very quickly along the equator from Asia towards the Americas, eventually inducing large water temperature changes along the coasts of South and North America. When the bulge makes its inevitable and slower return back, that’s a La Niña event.

Says the JGR paper’s lead author, Jean Tournadre of Laboratoire d’Océanographie Saptiale, Institut Français de Recherche pour l’Exploitation de la Mer, “Satellite altimetry has become a standard tool for ocean modeling and climatology studies.” He adds, “Altimeters provide precise measurements of sea-surface topography, the significant wave height, and the small-scale roughness of the sea surface.” Indeed, a radar altimeter can measure sea height down to one centimeter.

Altimetry works by sending 1,800 separate radar pulses per second down towards Earth from a height of some 800 kilometers and recording how long their echoes take to bounce back. The authors’ work with what Vandemark calls “the problematic subset of echoes from very smooth ocean areas” suggests that altimeters may now be able to estimate the spatial extent of these smooth areas as well and to recover more sea level estimates.

Vandemark notes that having more accurate equatorial Pacific Ocean measurements “provides agencies like NASA and NOAA more measurements for El Niño prediction and tracking.” NOAA, the National Oceanic and Atmospheric Administration, is responsible for forecasting El Niño events, just as its National Weather Service is responsible for weather forecasting and warnings.

Radar altimetry has been around for only 15 years and in that time has revolutionized the study of the ocean. Among its other scientific uses, altimetry is also used to monitor the ocean’s circulation patterns, glaciers, predict the strength of hurricanes, and measure river and lake levels worldwide.

To learn more about ocean surface topography from space, visit http://sealevel.jpl.nasa.gov.

David Sims | EurekAlert!
Further information:
http://sealevel.jpl.nasa.gov
http://www.unh.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>