Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that measures sea level, helps predict EL Nino events, improved by new modeling

13.04.2006


A paper published today in the American Geophysical Union’s Journal of Geophysical Research-Oceans shows a method to recover valuable data from the primary tool used for measuring global sea level – satellite radar altimetry. Altimeter data are used, among other benefits, to monitor and predict the occurrence of events such as El Niño and La Niña – a coupled ocean-atmosphere phenomena that can alter global weather patterns.



Some six percent of global altimetry measurements are typically discarded because the instrument can’t get accurate readings in areas of ocean calm or “slicks” caused by a lack of wind and waves, or by surface films created by blooms of phytoplankton or oil spills. Because millions of altimeter measurements are made per year, that six percent translates into a huge amount of unused data.

The improvement comes from a modeling technique developed by scientists that should enhance and expand the number of altimeter measurements that NASA can collect – using the Jason-1 satellite – from the equatorial Pacific Ocean where El Niño events originate. Jason-1, launched in 2001, is a joint NASA/Centre National d’Études Spatiales or CNE (the French government space agency) mission.


Says co-author Doug Vandemark, now a radar engineer/oceanographer and research professor at the University of New Hampshire’s Institute for the Study of Earth, Oceans, and Space (EOS), “Every year our altimeters make something like 10 million ocean measurements so being able to recover at least a portion of that six percent gives us better information on sea-surface height. The percentage is much higher than six for calmer equatorial regions such as the Pacific, which tells us about where the bulge of water is that controls the El Niño.”

Picture the Pacific Ocean as a big bathtub. A bulge in the western end – created by warm water and winds – can set off an El Niño event by creating a wave that propagates very quickly along the equator from Asia towards the Americas, eventually inducing large water temperature changes along the coasts of South and North America. When the bulge makes its inevitable and slower return back, that’s a La Niña event.

Says the JGR paper’s lead author, Jean Tournadre of Laboratoire d’Océanographie Saptiale, Institut Français de Recherche pour l’Exploitation de la Mer, “Satellite altimetry has become a standard tool for ocean modeling and climatology studies.” He adds, “Altimeters provide precise measurements of sea-surface topography, the significant wave height, and the small-scale roughness of the sea surface.” Indeed, a radar altimeter can measure sea height down to one centimeter.

Altimetry works by sending 1,800 separate radar pulses per second down towards Earth from a height of some 800 kilometers and recording how long their echoes take to bounce back. The authors’ work with what Vandemark calls “the problematic subset of echoes from very smooth ocean areas” suggests that altimeters may now be able to estimate the spatial extent of these smooth areas as well and to recover more sea level estimates.

Vandemark notes that having more accurate equatorial Pacific Ocean measurements “provides agencies like NASA and NOAA more measurements for El Niño prediction and tracking.” NOAA, the National Oceanic and Atmospheric Administration, is responsible for forecasting El Niño events, just as its National Weather Service is responsible for weather forecasting and warnings.

Radar altimetry has been around for only 15 years and in that time has revolutionized the study of the ocean. Among its other scientific uses, altimetry is also used to monitor the ocean’s circulation patterns, glaciers, predict the strength of hurricanes, and measure river and lake levels worldwide.

To learn more about ocean surface topography from space, visit http://sealevel.jpl.nasa.gov.

David Sims | EurekAlert!
Further information:
http://sealevel.jpl.nasa.gov
http://www.unh.edu

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>