Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Create 5-Million-Year Climate Record

10.04.2006


Brown University geologists have created the longest continuous record of ocean surface temperatures, dating back 5 million years. The record shows slow, steady cooling in the eastern equatorial Pacific, a finding that challenges the notion that the Ice Ages alone sparked a global cooling trend. Results are published in Science.

Using chemical clues mined from ocean mud, Brown University researchers have generated the longest continuous record of ocean temperatures on Earth.

The 5-million-year record is a history of temperatures in the eastern equatorial Pacific, or EEP, located off the coast of South America. The area is an anomaly – a huge swath of cool water in the tropics – that plays an important role in global climate. In the EEP, trade winds pull nutrient-rich cold water to the surface, which makes for fertile fisheries off the coasts of Peru, Chile and Ecuador. The interplay of wind and water can also fuel El Niño events, a large-scale warming in the EEP that slows the upwelling of cold water and forces changes in weather, such as droughts or floods, far from the tropical Pacific.



In the EEP, the Brown geology team found that surface temperatures were 27° C 5 million years ago. Surface temperatures are 23° C today. In between, they found a pattern of steady cooling – roughly one degree Celsius every million years.

This finding, published in Science, contradicts the long-standing notion that rapid glacier growth in the high northern latitudes about 3 million years ago alone set off dramatic cooling of the global climate. The finding shows instead that glaciation was part of a long-term cooling trend.

The climate record suggests that ocean regions near Antarctica were the main driver of EEP cooling by continuously pumping cold water into the area. This finding was bolstered by additional evidence that glacial cycles affected the tropical Pacific long before the advent of large ice sheets in the Northern Hemisphere.

“The Southern Hemisphere, not the Northern Hemisphere, more likely had a stronger effect on temperature and productivity in the eastern Pacific,” said Kira Lawrence, a graduate student in the Department of Geological Sciences and the lead author of the Science paper. “We may need to refocus where we look to understand the evolution of climate over the past 5 million years.”

Lawrence, post-doctoral research fellow Zhonghui Liu, and Professor Tim Herbert used sediment cores pulled from hundreds of meters below the surface of the Pacific by a ship operated by the Ocean Drilling Program, an international research organization. Moving down the cores, collecting small samples of gray mud, scientists can go back in time. The end result: Thousands of glass vials filled with climate history.

But how do you extract history from mud? The answer was found in tiny marine fossils.

To date the sediments, the geologists analyzed fossils and traces of oxygen trapped in the shells of microscopic ocean organisms. To get temperatures, the Brown team looked to algae, infinitesimal surface-dwellers that produce fatty compounds called alkenones. Algae crank out two kinds of alkenones depending on the surrounding water temperature. When water is cooler, algae make more of one kind. When water is warmer, they produce more of another. By carefully measuring the amount of these alkenones in each sample, researchers were able to calculate past surface temperatures.

The resulting 5-million-year timeline might have a practical use. Scientists trying to predict future climate change may use the data in computer simulations that model natural climate variability as well as predict the impact of accelerated warming due to greenhouse gas emissions.

Herbert said the work has other implications for understanding climate change.

“Results from the past prove that it is possible for the EEP to exist in a kind of permanent El Niño state, which would have immense climate and biological repercussions if it were to happen again under global warming,” Herbert said. “The geological evidence also suggests that to predict warming in the EEP, the key ocean region to monitor is near Antarctica.”

The National Science Foundation and the Geological Society of America funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>