Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better estimates for future extreme precipitation in Europe

29.03.2006

Researchers in Switzerland report that extreme rains in Europe may grow stronger and more frequent in the near future and have significant effects on the region’s infrastructure and natural systems. They aggregated a number of regional European climate models to produce more refined estimates of increases in precipitation extremes over most of the continent by the late 21st century than were previously available. Their research was published on 24 March in the Journal of Geophysical Research-Atmospheres, a publication of the American Geophysical Union.

Christoph Frei and his coauthors at the Swiss Federal Institute of Technology Zurich (ETH) and at the University of Reading in the United Kingdom used a unique set of regional climate model simulations and statistical analysis tools from a pair of European Union projects--PRUDENCE and STARDEX--in six regional climate models to quantify the changes in exceptionally strong precipitation events over the next 100 years.

Their analysis shows that Alpine regions and northern European locations above 45 degrees latitude (including such major cities as London, Berlin, and Stockholm) are likely to experience increases in the frequency and strength of fall, winter and springtime extreme precipitation events by the year 2100. They report, for example, that in Scandinavia, unusually strong events that are now expected to occur once per century will occur at approximately 20-40 year intervals.

Global circulation and disconnected regional models had previously forecast increases in extreme precipitation, as higher atmospheric greenhouse gas concentrations are thought to heighten the frequency of such events worldwide. The combination of regional European models used in the current study adds to the detail available to researchers and provides improved estimates for the pattern, magnitude, and uncertainty of precipitation changes, as compared with larger, more general models.

"There are several implications for climate change research from this study," notes Frei, now at the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss). "First, it confirms the prospects of regional climate models as tools for deriving future scenarios of climate extremes. This has great impact on the design of future ensemble climate modeling projects."

The authors confirmed their results using the extensive rain gauge network already in place in the European Alps. They say that although the Alps cover only a limited part of the model’s domain, and its results cannot be extrapolated to other regions, their model analysis showed exceptional accuracy when compared with observational data at fine spatial scales that are not resolved in current global models.

By combining a number of different models, the researchers were able to use the varying techniques employed in regional climate modeling. They note that their study does not account for all sources of uncertainty, and should be interpreted as a possible scenario of future extreme precipitation events, but one with higher reliability than was previously possible.

The research was sponsored by the European Union, the Swiss Ministry for Education and Science, and the Swiss National Science Foundation.

Title: "Future change of precipitation extremes in Europe: An intercomparison of scenarios from regional climate models"

Authors: Christoph Frei, Institute for Atmospheric and Climate Science, Eidgenoessische Technische Hochschule (ETH), Zurich, Switzerland; now at Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzerland; Regina Schoell, Sophie Fukutome, Juerg Schmidli, Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland; Pier Luigi Vidale, Center for Global Atmospheric Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom.

Citation: Frei, C., R. Schoell, S. Fukutome, J. Schmidli, and P. L. Vidale (2006), Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models, J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.

Contact information for author: Christoph Frei: christoph.frei@meteoswiss.ch or +41 44 256 9755

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>