Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better estimates for future extreme precipitation in Europe

29.03.2006

Researchers in Switzerland report that extreme rains in Europe may grow stronger and more frequent in the near future and have significant effects on the region’s infrastructure and natural systems. They aggregated a number of regional European climate models to produce more refined estimates of increases in precipitation extremes over most of the continent by the late 21st century than were previously available. Their research was published on 24 March in the Journal of Geophysical Research-Atmospheres, a publication of the American Geophysical Union.

Christoph Frei and his coauthors at the Swiss Federal Institute of Technology Zurich (ETH) and at the University of Reading in the United Kingdom used a unique set of regional climate model simulations and statistical analysis tools from a pair of European Union projects--PRUDENCE and STARDEX--in six regional climate models to quantify the changes in exceptionally strong precipitation events over the next 100 years.

Their analysis shows that Alpine regions and northern European locations above 45 degrees latitude (including such major cities as London, Berlin, and Stockholm) are likely to experience increases in the frequency and strength of fall, winter and springtime extreme precipitation events by the year 2100. They report, for example, that in Scandinavia, unusually strong events that are now expected to occur once per century will occur at approximately 20-40 year intervals.

Global circulation and disconnected regional models had previously forecast increases in extreme precipitation, as higher atmospheric greenhouse gas concentrations are thought to heighten the frequency of such events worldwide. The combination of regional European models used in the current study adds to the detail available to researchers and provides improved estimates for the pattern, magnitude, and uncertainty of precipitation changes, as compared with larger, more general models.

"There are several implications for climate change research from this study," notes Frei, now at the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss). "First, it confirms the prospects of regional climate models as tools for deriving future scenarios of climate extremes. This has great impact on the design of future ensemble climate modeling projects."

The authors confirmed their results using the extensive rain gauge network already in place in the European Alps. They say that although the Alps cover only a limited part of the model’s domain, and its results cannot be extrapolated to other regions, their model analysis showed exceptional accuracy when compared with observational data at fine spatial scales that are not resolved in current global models.

By combining a number of different models, the researchers were able to use the varying techniques employed in regional climate modeling. They note that their study does not account for all sources of uncertainty, and should be interpreted as a possible scenario of future extreme precipitation events, but one with higher reliability than was previously possible.

The research was sponsored by the European Union, the Swiss Ministry for Education and Science, and the Swiss National Science Foundation.

Title: "Future change of precipitation extremes in Europe: An intercomparison of scenarios from regional climate models"

Authors: Christoph Frei, Institute for Atmospheric and Climate Science, Eidgenoessische Technische Hochschule (ETH), Zurich, Switzerland; now at Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzerland; Regina Schoell, Sophie Fukutome, Juerg Schmidli, Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland; Pier Luigi Vidale, Center for Global Atmospheric Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom.

Citation: Frei, C., R. Schoell, S. Fukutome, J. Schmidli, and P. L. Vidale (2006), Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models, J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.

Contact information for author: Christoph Frei: christoph.frei@meteoswiss.ch or +41 44 256 9755

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>