Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mega Eruption of Yellowstone’s Southern Twin

29.03.2006


North America isn’t the only continent that’s experienced super-colossal volcanic eruptions in the recent geologic past. The massive explosion of the almost unknown Vilama Caldera in Argentina appears to have matched Yellowstone’s last continent-blanketing blast. It may, in fact, be just one of several unappreciated supervolcanoes hidden in a veritable mega-volcano nursery called the Eduardo Avaroa Caldera Complex, located in the inhospitable Puna-Altiplano region near the tri-section of Argentina, Bolivia, and Chile.



"Vilama Caldera formed during a single event that emitted approximately 2000 cubic kilometers (almost 500 cubic miles) of pyroclastic material," said geologist Miguel M. Soler of the National University of Jujuy in San Salvador de Jujuy, Argentina. The volume of ash and pyroclastic material, called ignimbrites, produced by the 8.4 million-year-old eruption, and the size of the associated caldera, put it among the world’s largest known eruptions, he says.

"In contrast, for example, Yellowstone produced its important volumes of ignimbrites and lavas in three cataclysmic events. Eruptions at 2.0, 1.3, and 0.6 million years ago ejected huge volumes of rhyolite magma, and each formed a caldera and extensive layers of thick pyroclastic flow deposits," said Soler. Soler will present some of the recent groundbreaking work on Vilama supervolcano on Monday, 3 April at Backbone of the Americas - Patagonia to Alaska. The meeting is co-convened by the Geological Society of America and the Asociación Geológica Argentina, with collaboration of the Sociedad Geológica de Chile. The meeting takes place 3-7 April in Mendoza, Argentina.


The Vilama Caldera appears to have been created when the 10 by 24-mile roof catastrophically collapsed on a chamber of molten rock, or magma, explosively venting vast amounts of ignimbrites out in various directions. That massive roof collapse is the one thing all large calderas have in common and what separates them from the exponentially smaller "single vent" volcanic eruptions like Mount St. Helens or Mount Pinatubo.

But that’s where the similarities with Yellowstone end, says Soler. The magma under Yellowstone is thought to be created by the melting of ancient crust under North America, buoying back up and creating a hot spot. Vilama’s magma was probably created by a more complex melting of the crust caused by the South American Plate colliding with and overriding the Nazca Plate to the west. The resulting kneading of the crust — the thickening and thinning, pressurizing and depressurizing — caused large pockets of rock to melt and eventually led to a series of gigantic caldera eruptions.

The trigger for the Vilama mega-eruption, says Soler, was probably the same thing that gave the caldera its football-like shape: The tectonic faults in the roof of the magma chamber which probably formed as a consequence of its own instability and/or from the significant stresses in the crust in that area. The crystal-rich nature of the ignimbrites and minimal signs of pre-eruption gases also point to an external trigger for the vast eruption, says Soler.

Much remains unknown about Vilama Caldera, says Soler, largely because it is a terribly difficult caldera to study. Unlike Yellowstone, which has the Yellowstone River cutting through it and exposing the layers of volcanic rock, called stratigraphy, for easy reading by geologists, Vilama is in one of the driest places on Earth.

"There is not much topographic relief to permit viewing of many complete columns of stratigraphy," said Soler. What’s more, most of the region is more than 13,000 feet above sea level, which makes field work in the area particularly physically demanding, as well. All this also explains why Vilama is just the first of several important calderas in the region that deserve a lot more scientific attention, he said.

"Among the other calderas in the region that need to be studied in detail and which in all cases are also certainly ’supervolcanoes’ are Cerro Guacha, Coruto, Pastos Grandes, and Capina," said Soler.

The study of these supervolcanoes is not an end in itself, according to Soler. Figuring out their histories and how and why they erupted will help geologists grasp the regional forces that have been at work in one of the Earth’s thickest patches of crust, as well as give clues to other calderas worldwide.

WHERE & WHEN
Backbone of the Americas - Patagonia to Alaska
Centro de Congresos
Mendoza, Argentina
Thursday, 6 April 2006

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>