Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar melting may raise sea level sooner than expected

24.03.2006


The Earth’s warming temperatures are on track to melt the Greenland and Antarctic ice sheets sooner than previously thought and ultimately lead to a global sea level rise of at least 20 feet, according to new research.


The red and pink areas in this image of the state of Florida indicate the areas that would be submerged if the sea level rose about 20 feet (six meters). Courtesy of Jeremy Weiss and Jonathan Overpeck, The University of Arizona.


An image of the area around New Orleans, La., with the water shown in blue. The portions of the image colored pink and red represent areas that would be submerged if sea level rose about three feet (one meter). Courtesy of Jeremy Weiss and Jonathan Overpeck, The University of Arizona.



If the current warming trends continue, by 2100 the Earth will likely be at least 4 degrees Fahrenheit warmer than present, with the Arctic at least as warm as it was nearly 130,000 years ago. At that time, significant portions of the Greenland and Antarctic Ice Sheets melted, resulting in a sea level about 20 feet (six meters) higher than present day.

These studies are the first to link Arctic and Antarctic melting during the Last Interglaciation, 129,000 to 116,000 years ago. "This is a real eye-opener set of results," said study co-author Jonathan T. Overpeck of The University of Arizona in Tucson. "The last time the Arctic was significantly warmer than present day, the Greenland Ice Sheet melted back the equivalent of two to three meters (about six to ten feet) of sea level."


Contrary to what was previously believed, the research suggests the Antarctic ice sheet also melted substantially, contributing another six to 10 feet (two to three meters) of sea level rise. The new findings will be published in the March 24 issue of Science.

Co-author Bette Otto-Bliesner of the National Center for Atmospheric Research in Boulder, Colo., said, "Although the focus of our work is polar, the implications are global. These ice sheets melted before and sea levels rose. The warmth needed isn’t that much above present conditions."

The ice sheets are melting already. The new research suggests the melting could accelerate, thereby raising sea level as fast, or faster, than three feet (about one meter) of sea level rise per century.

Although ice sheet disintegration and the subsequent sea level rise lags behind rising temperatures, the process will become irreversible sometime in the second half of the 21st century, Overpeck said, "unless something is done to dramatically reduce human emissions of greenhouse gas pollution.

"We need to start serious measures to reduce greenhouse gases within the next decade. If we don’t do something soon, we’re committed to four-to-six meters (13 to 20 feet) of sea level rise in the future."

As sea levels rise, coastal regions are more susceptible to the impacts of storm surge. The predicted rise would eventually inundate heavily populated coastal areas worldwide.

Overpeck, a professor of geosciences and director of Institute for the Study of Planet Earth at The University of Arizona, Otto-Bliesner and their colleagues report their new findings in a pair of papers. A complete list of authors is at the end of this release. The National Science Foundation funded the research.

The researchers used a computer model that scientists use to predict future climate, the NCAR-based Community Climate System Model (CCSM), and combined it with ice sheet simulations to estimate what the Earth’s climate was like 129,000 years ago.

The team also cross-checked the computer’s estimate of ancient climate against data from natural recorders of ancient climate such as sediments, fossils and ice cores.

The CCSM did a good job of estimating past climate changes. That gives the researchers additional confidence in the model’s predictions of future climate change, Otto-Bliesner said.

The work shows that meltwater from Greenland and other Arctic sources raised sea level by as much as 10 feet (about three meters) during the Last Interglaciation. However, coral records indicate that the sea level actually rose 13 to 20 feet (four to six meters) and sediments under the West Antarctic Ice Sheet indicate parts of the ice sheet disappeared.

Antarctic melting must have produced the additional sea-level rise, Overpeck concludes. He said the rise in sea level from melting in the Arctic could have destabilized parts of the Antarctic ice sheet.

In the last few years sea level has begun rising more rapidly, Overpeck said. He’s concerned, because unlike the Greenland Ice Sheet, the base of the West Antarctic Ice Sheet is below sea level. If it starts to melt, it could go fast, he said. Moreover, during the Last Interglaciation, most of the warming was in the Arctic and only in summer. Now the Earth is warming at both poles year round.

"To get rid of Greenland’s ice, you have to melt it. In the Antarctic, all you have to do is break up the ice sheet and float it away and that would raise sea level," he said. "It’s just like throwing a bunch of ice cubes into a full glass of water and watching the water spill over the top."

Overpeck said the team’s next step will be developing a more precise estimate of the threshold of ice sheet and sea level change beyond which major sea level rise is inevitable.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>