Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar melting may raise sea level sooner than expected

24.03.2006


The Earth’s warming temperatures are on track to melt the Greenland and Antarctic ice sheets sooner than previously thought and ultimately lead to a global sea level rise of at least 20 feet, according to new research.


The red and pink areas in this image of the state of Florida indicate the areas that would be submerged if the sea level rose about 20 feet (six meters). Courtesy of Jeremy Weiss and Jonathan Overpeck, The University of Arizona.


An image of the area around New Orleans, La., with the water shown in blue. The portions of the image colored pink and red represent areas that would be submerged if sea level rose about three feet (one meter). Courtesy of Jeremy Weiss and Jonathan Overpeck, The University of Arizona.



If the current warming trends continue, by 2100 the Earth will likely be at least 4 degrees Fahrenheit warmer than present, with the Arctic at least as warm as it was nearly 130,000 years ago. At that time, significant portions of the Greenland and Antarctic Ice Sheets melted, resulting in a sea level about 20 feet (six meters) higher than present day.

These studies are the first to link Arctic and Antarctic melting during the Last Interglaciation, 129,000 to 116,000 years ago. "This is a real eye-opener set of results," said study co-author Jonathan T. Overpeck of The University of Arizona in Tucson. "The last time the Arctic was significantly warmer than present day, the Greenland Ice Sheet melted back the equivalent of two to three meters (about six to ten feet) of sea level."


Contrary to what was previously believed, the research suggests the Antarctic ice sheet also melted substantially, contributing another six to 10 feet (two to three meters) of sea level rise. The new findings will be published in the March 24 issue of Science.

Co-author Bette Otto-Bliesner of the National Center for Atmospheric Research in Boulder, Colo., said, "Although the focus of our work is polar, the implications are global. These ice sheets melted before and sea levels rose. The warmth needed isn’t that much above present conditions."

The ice sheets are melting already. The new research suggests the melting could accelerate, thereby raising sea level as fast, or faster, than three feet (about one meter) of sea level rise per century.

Although ice sheet disintegration and the subsequent sea level rise lags behind rising temperatures, the process will become irreversible sometime in the second half of the 21st century, Overpeck said, "unless something is done to dramatically reduce human emissions of greenhouse gas pollution.

"We need to start serious measures to reduce greenhouse gases within the next decade. If we don’t do something soon, we’re committed to four-to-six meters (13 to 20 feet) of sea level rise in the future."

As sea levels rise, coastal regions are more susceptible to the impacts of storm surge. The predicted rise would eventually inundate heavily populated coastal areas worldwide.

Overpeck, a professor of geosciences and director of Institute for the Study of Planet Earth at The University of Arizona, Otto-Bliesner and their colleagues report their new findings in a pair of papers. A complete list of authors is at the end of this release. The National Science Foundation funded the research.

The researchers used a computer model that scientists use to predict future climate, the NCAR-based Community Climate System Model (CCSM), and combined it with ice sheet simulations to estimate what the Earth’s climate was like 129,000 years ago.

The team also cross-checked the computer’s estimate of ancient climate against data from natural recorders of ancient climate such as sediments, fossils and ice cores.

The CCSM did a good job of estimating past climate changes. That gives the researchers additional confidence in the model’s predictions of future climate change, Otto-Bliesner said.

The work shows that meltwater from Greenland and other Arctic sources raised sea level by as much as 10 feet (about three meters) during the Last Interglaciation. However, coral records indicate that the sea level actually rose 13 to 20 feet (four to six meters) and sediments under the West Antarctic Ice Sheet indicate parts of the ice sheet disappeared.

Antarctic melting must have produced the additional sea-level rise, Overpeck concludes. He said the rise in sea level from melting in the Arctic could have destabilized parts of the Antarctic ice sheet.

In the last few years sea level has begun rising more rapidly, Overpeck said. He’s concerned, because unlike the Greenland Ice Sheet, the base of the West Antarctic Ice Sheet is below sea level. If it starts to melt, it could go fast, he said. Moreover, during the Last Interglaciation, most of the warming was in the Arctic and only in summer. Now the Earth is warming at both poles year round.

"To get rid of Greenland’s ice, you have to melt it. In the Antarctic, all you have to do is break up the ice sheet and float it away and that would raise sea level," he said. "It’s just like throwing a bunch of ice cubes into a full glass of water and watching the water spill over the top."

Overpeck said the team’s next step will be developing a more precise estimate of the threshold of ice sheet and sea level change beyond which major sea level rise is inevitable.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>