Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research re-examines strong hurricane studies

20.03.2006


Studies link strong storms with rising sea surface temperatures

Researchers at the Georgia Institute of Technology have released a study supporting the findings of several studies last year linking an increase in the strength of hurricanes around the world to a global increase in sea surface temperature. The new study strengthens the link between the increase in hurricane intensity and the increase in tropical sea surface temperature. It found that while factors such as wind shear do affect the intensity of individual storms or storm seasons, they don’t account for the global 35-year increase in the number of the most intense hurricanes. The study appears online in the March 16 edition of Science Express at www.scienceexpress.org.

Last summer, the journals Nature and Science published studies claiming to show a very strong link between rising tropical sea surface temperatures and an increase in the strength of hurricanes. The Nature study, by Kerry Emanuel at the Massachusetts Institute of Technology, concluded that cyclonic storms in the North Atlantic and North Pacific oceanic basins were increasing in strength and duration. That increase, Emanuel concluded, was due to increasing sea surface temperatures caused, in part, by global warming.



A month later, the journal Science published research linking an increase in sea surface temperatures over the past 35 years to a near doubling in the number of the strongest hurricanes, those labeled Category 4 or 5. The study, authored by Peter Webster, Judith Curry and Hai-Ru Chang at Georgia Tech and Greg Holland at the National Center for Atmospheric Research, examined hurricanes in all oceanic basins that play host to cyclonic storms around the world.

This latest study sought to determine whether factors other than sea surface temperatures could be significantly contributing to this 35-year trend. Georgia Tech researchers Carlos Hoyos and Paula Agudelo, along with Curry and Webster examined three factors: vertical wind shear (changes in wind speed and direction with height); humidity in the lower atmosphere; and zonal stretching deformation, which is the tendency of the winds to rotate in a cyclonic direction.

"If you examine the intensification of a single storm, or even the statistics on intensification for a particular season, factors like wind shear can play an important role," said Curry, professor and chair of the School of Earth and Atmospheric Sciences at Georgia Tech. "However, there is no global trend in wind shear or the other factors over the 35-year period."

Curry said they did see a small but significant trend in increasing wind shear strength in the North Atlantic, but that the sea surface temperatures were the dominant influence on the increase in both global hurricane intensity as well as the intensity of the North Atlantic hurricanes.

"With this new paper, we firm up the link between the increase in sea surface temperatures and hurricane intensity, which has been a key issue in the debate about whether global warming is causing an increase in hurricane intensity," said Curry.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu
http://www.scienceexpress.org

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>