Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Test of Snow’s Thickness May ’Bear’ Results Key to Polar Climate Studies, Wildlife Habitat

16.03.2006


A NASA-funded expedition to the Arctic to map the thickness of snow has a legion of unexpected furry fans hailing from one of the world’s coldest regions: polar bears.



From mid-March to mid-April, researchers embark on an Arctic field experiment using a new airborne radar to determine the accuracy of satellite measurements of snow’s thickness atop polar sea ice. Snow thickness is just one of several cutting-edge measurements taken by the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA’s Aqua satellite.

The ability to accurately measure snow depth will help researchers understand much more about how climate changes in Earth’s polar regions. As a bonus, this research will tell wildlife biologists and ecologists about the amount of snow polar bears and other Arctic wildlife have to build their habitats.


Historically, it has been very difficult to measure the thickness of snow on top of the sea ice. "It’s not as easy as going into your backyard and sticking a ruler in the snow to measure the snowfall," said Thorsten Markus, a cryospheric scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md., and co-principal investigator of the field campaign. "Measuring snow’s thickness is something that people have done for many years from ships. Navigating those waters posed dangers to human beings, and did not always garner the most accurate results. In this new age, satellites have the potential to provide the most precise measurements of snow depth ever."

Prasad Gogineni, an engineer from the University of Kansas, Lawrence, developed the new ultra wide-band snow radar, a system that can now measure snow thickness from an airplane. These airborne measurements will confirm, or validate, data taken by the satellite. The new radar transmits a pulse that penetrates the snow on top of the sea ice. It then measures the return time for both the reflection from the top of the snow blanket and from the bottom where the snow touches the ice. The difference in reflection times is converted to a snow depth.

A thick insulating blanket of snow can also be vital to polar bears and other Arctic wildlife. Polar bears living in Alaska, Canada, Greenland, Norway, and Russia dig out their dens on snowy slopes to give birth or to shelter their young during blizzards. The temperature under a layer of snow does not usually fall below freezing, so polar bears will also curl up and allow snow to drift around their bodies to form an insulating layer of warmth. The less snowfall on the sea ice the less snow polar bears have to build their dens.

"Officials who manage wildlife are very interested in our measurement capabilities," said Markus. "In addition to polar bears needing a lot of snow to create their dens, polar foxes and sled dogs use the snow for insulation. Field mice and lemmings can remain active throughout the coldest winters, searching for plant food in a network of tunnels under the snow."

AMSR-E measures several important aspects of the Earth critical to global change science and monitoring efforts in addition to snow depth, including precipitation, oceanic water vapor, cloud water, near-surface wind speed, sea surface temperature, soil moisture, and sea ice. This year’s Arctic experiment will be the second Alaskan Arctic field campaign to confirm measurements made by AMSR-E.

"Over the last several decades, we’ve observed significant changes in the Arctic and in particular the decreasing Arctic sea ice cover," said Donald Cavalieri, a Goddard senior research scientist, satellite remote sensing specialist, and lead principal investigator for this year’s Arctic field experiment. "We need to continue to monitor these changes and to understand why this is happening because it could have very profound effects on our climate and wildlife."

This project is a collaboration between NASA; the U.S. Army Cold Regions Research and Engineering Lab, Hanover, N.H.; the National Oceanic and Atmospheric Administration’s Environmental Technology Laboratory, Boulder, Colo.; the University of Kansas, Lawrence; The Johns Hopkins University Applied Physics Laboratory, Laurel, Md.; and the University of Colorado at Boulder.

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/snow_thick.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>