Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radar altimetry revolutionises the study of the ocean

16.03.2006


Imagine a space tool so revolutionary it can determine the impact of climate change, monitor the melting of glaciers, discover invisible waves, predict the strength of hurricanes, conserve fish stocks and measure river and lake levels worldwide, among other scientific applications. This instrument is not the subject of a science-fiction novel. In fact, four of them are already operating 800 kilometres above Earth.



Fifteen years ago this ground-breaking instrument, called a radar altimeter, was launched into orbit, despite speculation of its usefulness from the wider oceanographic community. Although it took over a decade for its full impact to be realised, its accomplishments have been so great that it is credited with having revolutionised the field of physical oceanography.

In honour of altimetry, oceanographers, glaciologists, hydrologists and geodesists from around the world have gathered in Venice Lido, Italy, at the ‘15 Years of Progress in Radar Altimetry’ symposium, organised by ESA and the French Space Agency (CNES), to celebrate its success. Signifying its vast array of achievements, many have come to honour it for different reasons.


According to one of the pioneers of the altimeter, Massachusetts Institute of Technology’s (MIT) Carl Wunsch, its biggest contribution is conceptual rather than scientific because it changed the way scientists viewed the ocean.

"The greatest achievement of the altimeter is that it has showed us that the ocean system changes rather dramatically everyday and has shifted the view of it from this almost geological phenomenon creeping along very slowly to something much more interesting in which fluid is moving in all directions at all times," Wunsch said.

The radar altimeter offers valuable information on the state of the ocean by providing measurements of the height of the ocean surface. This is done by sending 1800 separate radar pulses down to Earth per second then recording how long their echoes take to bounce back.

Knowing the height of the sea surface tells scientists a great deal about what is happening at lower depths. Before the advent of radar altimetry, oceanographers had no way of looking at the ocean as a whole, which is essential because changes in one part of the ocean will eventually affect the whole rest of the ocean.

Lee-Lueng Fu of NASA’s Jet Propulsion Laboratory came to the symposium to honour the altimeter’s precision: "We are here to celebrate our success because we have managed to measure the height of sea surface with such extreme sensitivity that we are able to detect even two centimetres difference over 100 kilometres."

Because of this extraordinary ability oceanographers are able to measure changes in ocean currents and create a weather chart of ocean circulation for the first time – which Pierre-Yves Le Traon of the French Research Institute for Exploitation of the Sea (IFREMER) states as the instrument’s most outstanding achievement.

Ocean forecasting behaves much the same as weather forecasting: if there is high pressure (signified by higher sea levels), an anticyclonic ocean circulation takes place, which usually translates into good weather conditions, while low pressure (signified by lower sea levels) signifies that a cyclonic ocean current is present.

This type of forecasting has enormous societal and economical consequences. For example, it allows scientists to forecast El Niño events and the flooding of low-lying areas (such as Venice), as well as predict the trajectory of pollutants, which allows oil spills to be contained more quickly by placing barriers in their pathways.

The ability to measure the sea surface height, which varies across the ocean, with such accuracy allowed oceanographers to discover planetary waves, which Paolo Cipollini, of the National Oceanography Centre in the UK, names as the real success story of radar altimetry.

Planetary waves, also called Rossby waves, were theorised to have existed in the ocean as far back as 1930, but it was impossible to know for sure because they occur internally and are very small on the surface, about 10 centimetres high, making them impossible to detect from onboard an oceanographic research vessel.

According to Cipollini, radar altimetry offered proof of these waves for the first time. As oceanographers started mapping the sea surface height, they began seeing the internal waves, which extend 500 or 1000 kilometres underneath the ocean, moving by following the measurements on the surface.

These waves are thought to be very important because they may be responsible for setting the main circulation patterns in the ocean. Cipollini said: “It has been suggested that planetary waves are one mechanism which brings nutrients from the deep sea up to the surface, which would make them important for the carbon cycle.

"So it could be that these mysterious waves that up until 20 years ago we weren’t even able to see are also important for biologists and for people studying how the ocean is reacting to global warming."

ESA has had radar altimeters in orbit since July 1991, when ERS-1 was launched, which was followed by ERS-2 in 1995 and Envisat in 2002. The joint French Space Agency (CNES) and NASA mission TOPEX-Poseidon launched an altimeter in 1992, with follow-up mission Jason-1 flown in 2001.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMB1RNVGJE_planet_0.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>