Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying gems and minerals on Earth and on Mars

13.03.2006


It’ll be a snap to identify gemstones once Robert Downs finishes his library of spectral fingerprints for all the Earth’s minerals.



Downs is almost halfway there. So far, the associate professor of geosciences at The University of Arizona in Tucson has cataloged about 1,500 of the approximately 4,000 known minerals using a technique called Raman spectroscopy. The effort is known as the RRUFF Project.

"We’re developing a tricorder," Downs said, referring to the instrument used on the "Star Trek" television show that could be waved over materials to identify their chemical composition.


Downs’ work is destined for space. Although Downs’ current Raman spectrometer takes up an area the size of a tabletop, his colleague M. Bonner Denton, a UA professor of chemistry and of geosciences, is developing a pocket-sized Raman spectrometer to be used on the 2009 Mars rover.

Downs is collaborating with George Rossman of the California Institute of Technology in Pasadena to develop the database of minerals.

The technology being developed for Mars will help create handheld instruments for use on Earth.

One use for a hand-held instrument would be the identification of gemstones. Downs and Denton will both give presentations on that aspect of the project on Sunday afternoon, March 12, at the 57th Annual Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy (PITTCON 2006).

Their presentations will be part of the symposium, "Gemstone/Mineral Analysis: Developing Non-Destructive Analytical Methods and Assessment Standards for Identification and Classification," held in room 222A of the Orange County Convention Center in Orlando, Fla..

Denton’s 2:55 p.m. presentation, "The Present and Future Potential of Raman Spectroscopy in the Characterization of Gems and Minerals," will be followed at 3:15 p.m. by Downs’ presentation, "The RRUFF Project: Creating an Integrated Database of Oriented Raman Spectra, X-Ray Diffraction and Electron Microprobe Analyses of Minerals."

Other ways to accurately identify minerals, such as X-ray diffraction and electron microprobe, require grinding a bit of the sample to powder or polishing the sample in a specific manner.

However, such rough treatment may not be the method of choice to determine that a glittering gemstone is truly a diamond, rather than just a piece of cubic zirconia.

Unlike other methods of identifying minerals, a Raman spectrometer does not require destructive sampling. It shoots a laser beam at the sample. The laser excites atoms within the sample, which then emit a very weak light of a wavelength in a pattern characteristic of the material.

"It’s like a fingerprint," Downs said.

The technique is named after Sir C.V. Raman, who won a 1930 Nobel Prize for figuring out the underlying physics.

But no Raman spectrometer, big or small, can conclusively identify Mars rocks or any other kinds of minerals without the kind of comprehensive database Downs is creating.

When an unknown material is analyzed with a Raman spectrometer, it can be identified by comparing it with reference information from a database.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>