Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of Climate Warming on Polar Ice Sheets Confirmed

10.03.2006


Antarctica lost much more ice to the sea than it gained from snowfall, resulting in an increase in sea level. Credit: NASA/SVS


The Greenland ice sheet gained more ice from snowfall at high altitudes than it lost from melting ice along its coast. Credit: NASA/SVS


In the most comprehensive survey ever undertaken of the massive ice sheets covering both Greenland and Antarctica, NASA scientists confirm climate warming is changing how much water remains locked in Earth’s largest storehouse of ice and snow.

Other recent studies have shown increasing losses of ice in parts of these sheets. This new survey is the first to inventory the losses of ice and the addition of new snow on both in a consistent and comprehensive way throughout an entire decade.

The survey shows that there was a net loss of ice from the combined polar ice sheets between 1992 and 2002 and a corresponding rise in sea level. The survey documents for the first time extensive thinning of the West Antarctic ice shelves and an increase in snowfall in the interior of Greenland, as well as thinning at the edges. All are signs of a warming climate predicted by computer models.



The survey, published in the Journal of Glaciology, combines new satellite mapping of the height of the ice sheets from two European Space Agency satellites. It also used previous NASA airborne mapping of the edges of the Greenland ice sheets to determine how fast the thickness is changing.

In Greenland, the survey saw large ice losses along the southeastern coast and a large increase in ice thickness at higher elevations in the interior due to relatively high rates of snowfall. This study suggests there was a slight gain in the total mass of frozen water in the ice sheet over the decade studied, contrary to previous assessments.

This situation may have changed in just the past few years, according to lead author Jay Zwally of NASA’s Goddard Space Flight Center, Greenbelt, Md. Last month NASA scientists at the Jet Propulsion Laboratory, Pasadena, Calif., reported a speed up of ice flow into the sea from several Greenland glaciers. That study included observations through 2005; Zwally’s survey concluded with 2002 data.

When the scientists added up the overall gains and losses of ice from the Greenland and Antarctic ice sheets, there was a net loss of ice to the sea. The amount of water added to the oceans (20 billion tons) is equivalent to the total amount of freshwater used in homes, businesses and farming in New York, New Jersey and Virginia each year.

"The study indicates that the contribution of the ice sheets to recent sea-level rise during the decade studied was much smaller than expected, just two percent of the recent increase of nearly three millimeters a year," says Zwally. "Continuing research using NASA satellites and other data will narrow the uncertainties in this important issue."

NASA is continuing to monitor the polar ice sheets with the Ice, Cloud and land Elevation Satellite (ICESat), launched in January 2003. ICESat uses a laser beam to measure the elevation of ice sheets with unprecedented accuracy three times a year. The first comprehensive ice sheet survey conducted by ICESat is expected early next year, said Zwally, who is the mission’s project scientist.

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov/goddard

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>