Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of Climate Warming on Polar Ice Sheets Confirmed

10.03.2006


Antarctica lost much more ice to the sea than it gained from snowfall, resulting in an increase in sea level. Credit: NASA/SVS


The Greenland ice sheet gained more ice from snowfall at high altitudes than it lost from melting ice along its coast. Credit: NASA/SVS


In the most comprehensive survey ever undertaken of the massive ice sheets covering both Greenland and Antarctica, NASA scientists confirm climate warming is changing how much water remains locked in Earth’s largest storehouse of ice and snow.

Other recent studies have shown increasing losses of ice in parts of these sheets. This new survey is the first to inventory the losses of ice and the addition of new snow on both in a consistent and comprehensive way throughout an entire decade.

The survey shows that there was a net loss of ice from the combined polar ice sheets between 1992 and 2002 and a corresponding rise in sea level. The survey documents for the first time extensive thinning of the West Antarctic ice shelves and an increase in snowfall in the interior of Greenland, as well as thinning at the edges. All are signs of a warming climate predicted by computer models.



The survey, published in the Journal of Glaciology, combines new satellite mapping of the height of the ice sheets from two European Space Agency satellites. It also used previous NASA airborne mapping of the edges of the Greenland ice sheets to determine how fast the thickness is changing.

In Greenland, the survey saw large ice losses along the southeastern coast and a large increase in ice thickness at higher elevations in the interior due to relatively high rates of snowfall. This study suggests there was a slight gain in the total mass of frozen water in the ice sheet over the decade studied, contrary to previous assessments.

This situation may have changed in just the past few years, according to lead author Jay Zwally of NASA’s Goddard Space Flight Center, Greenbelt, Md. Last month NASA scientists at the Jet Propulsion Laboratory, Pasadena, Calif., reported a speed up of ice flow into the sea from several Greenland glaciers. That study included observations through 2005; Zwally’s survey concluded with 2002 data.

When the scientists added up the overall gains and losses of ice from the Greenland and Antarctic ice sheets, there was a net loss of ice to the sea. The amount of water added to the oceans (20 billion tons) is equivalent to the total amount of freshwater used in homes, businesses and farming in New York, New Jersey and Virginia each year.

"The study indicates that the contribution of the ice sheets to recent sea-level rise during the decade studied was much smaller than expected, just two percent of the recent increase of nearly three millimeters a year," says Zwally. "Continuing research using NASA satellites and other data will narrow the uncertainties in this important issue."

NASA is continuing to monitor the polar ice sheets with the Ice, Cloud and land Elevation Satellite (ICESat), launched in January 2003. ICESat uses a laser beam to measure the elevation of ice sheets with unprecedented accuracy three times a year. The first comprehensive ice sheet survey conducted by ICESat is expected early next year, said Zwally, who is the mission’s project scientist.

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov/goddard

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>