Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mass extinctions - a threat from outer space or our own planet’s detox?

10.03.2006


Earth history has been punctuated by several mass extinctions rapidly wiping out nearly all life forms on our planet. What causes these catastrophic events? Are they really due to meteorite impacts? Current research suggests that the cause may come from within our own planet – the eruption of vast amounts of lava that brings a cocktail of gases from deep inside the Earth and vents them into the atmosphere.



University of Leicester geologists, Professor Andy Saunders and Dr Marc Reichow, are taking a fresh look at what may actually have wiped out the dinosaurs 65 million years ago and caused other similarly cataclysmic events, aware they may end up exploding a few popular myths.

The idea that meteorite impacts caused mass extinctions has been in vogue over the last 25 years, since Louis Alverez’s research team in Berkeley, California published their work about an extraterrestrial iridium anomaly found in 65-million-year-old layers at the Cretaceous-Tertiary boundary. This anomaly only could be explained by an extraterrestrial source, a large meteorite, hitting the Earth and ultimately wiping the dinosaurs – and many other organisms - off the Earth’s surface.


Professor Saunders commented: “Impacts are suitably apocalyptic. They are the stuff of Hollywood. It seems that every kid’s dinosaur book ends with a bang. But are they the real killers and are they solely responsible for every mass extinction on earth? There is scant evidence of impacts at the time of other major extinctions e.g., at the end of the Permian, 250 million years ago, and at the end of the Triassic, 200 million years ago. The evidence that has been found does not seem large enough to have triggered an extinction at these times.”

Flood basalt eruptions are – he says - an alternative kill mechanism. These do correspond with all main mass extinctions, within error of the techniques used to determine the age of the volcanism. Furthermore, they may have released enough greenhouse gases (SO2 and CO2) to dramatically change the climate. The largest flood basalts on Earth (Siberian Traps and Deccan Traps) coincide with the largest extinctions (end-Permian, and end-Cretaceous). “Pure coincidence?”, ask Saunders and Reichow.

While this is unlikely to be pure chance, the Leicester researchers are interested in precisely what the kill mechanism may be. One possibility is that the gases released by volcanic activity lead to a prolonged volcanic winter induced by sulphur-rich aerosols, followed by a period of CO2-induced warming.

Professor Andy Saunders and Dr. Marc Reichow at Leicester, in collaboration with Anthony Cohen, Steve Self, and Mike Widdowson at the Open University, have recently been awarded a NERC (Natural Environment Research Council) grant to study the Siberian Traps and their environmental impact.

The Siberian Traps are the largest known continental flood basalt province. Erupted about 250 million years ago at high latitude in the northern hemisphere, they are one of many known flood basalts provinces - vast outpourings of lava that covered large areas of the Earth’s surface. A major debate is underway concerning the origin of these provinces –including the Siberian Traps - and their environmental impact.

Using radiometric dating techniques, they hope to constrain the age and, combined with geochemical analysis, the extent, of the Siberian Traps. Measuring how much gas was released during these eruptions 250 million years ago is a considerable challenge. The researchers will study microscopic inclusions trapped in minerals of the Siberian Traps rocks to estimate the original gas contents. Using these data they hope to be able to assess the amount of SO2 and CO2 released into the atmosphere 250 million years ago, and whether or not this caused climatic havoc, wiping out nearly all life on earth. By studying the composition of sedimentary rocks laid down at the time of the mass extinction, they also hope to detect changes to seawater chemistry that resulted from major changes in climate.

From these data Professor Saunders and his team hope to link the volcanism to the extinction event. He explained: “If we can show, for example, that the full extent of the Siberian Traps was erupted at the same time, we can be confident that their environmental effects were powerful. Understanding the actual kill mechanism is the next stage….watch this space.”

Alex Jelley | alfa
Further information:
http://www2.le.ac.uk/ebulletin/news/press-releases/2000-2009/2006/03/nparticle-cjk-whw-tkd
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>