Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Issue Unprecedented Forecast of Next Sunspot Cycle

07.03.2006


NCAR scientists have succeeded in simulating the intensity of the sunspot cycle by developing a new computer model of solar processes. This figure compares observations of the past 12 cycles (above) with model results that closely match the sunspot peaks (below). The intensity level is based on the amount of the Sun’s visible hemisphere with sunspot activity. The NCAR team predicts the next cycle will be 30-50% more intense than the current cycle. (Figure by Mausumi Dikpati, Peter Gilman, and Giuliana de Toma, NCAR.)


The next sunspot cycle will be 30-50% stronger than the last one and begin as much as a year late, according to a breakthrough forecast using a computer model of solar dynamics developed by scientists at the National Center for Atmospheric Research (NCAR). Predicting the Sun’s cycles accurately, years in advance, will help societies plan for active bouts of solar storms, which can slow satellite orbits, disrupt communications, and bring down power systems.

The scientists have confidence in the forecast because, in a series of test runs, the newly developed model simulated the strength of the past eight solar cycles with more than 98% accuracy. The forecasts are generated, in part, by tracking the subsurface movements of the sunspot remnants of the previous two solar cycles. The team is publishing its forecast in the current issue of Geophysical Research Letters.

"Our model has demonstrated the necessary skill to be used as a forecasting tool," says NCAR scientist Mausumi Dikpati, the leader of the forecast team at NCAR’s High Altitude Observatory that also includes Peter Gilman and Giuliana de Toma.



Understanding the cycles

The Sun goes through approximately 11-year cycles, from peak storm activity to quiet and back again. Solar scientists have tracked them for some time without being able to predict their relative intensity or timing.

NCAR scientists Mausumi Dikpati (left), Peter Gilman, and Giuliana de Toma examine results from a new computer model of solar dynamics. (Photo by Carlye Calvin, UCAR)
Forecasting the cycle may help society anticipate solar storms, which can disrupt communications and power systems and affect the orbits of satellites. The storms are linked to twisted magnetic fields in the Sun that suddenly snap and release tremendous amounts of energy. They tend to occur near dark regions of concentrated magnetic fields, known as sunspots.

The NCAR team’s computer model, known as the Predictive Flux-transport Dynamo Model, draws on research by NCAR scientists indicating that the evolution of sunspots is caused by a current of plasma, or electrified gas, that circulates between the Sun’s equator and its poles over a period of 17 to 22 years. This current acts like a conveyor belt of sunspots.

The sunspot process begins with tightly concentrated magnetic field lines in the solar convection zone (the outermost layer of the Sun’s interior). The field lines rise to the surface at low latitudes and form bipolar sunspots, which are regions of concentrated magnetic fields. When these sunspots decay, they imprint the moving plasma with a type of magnetic signature. As the plasma nears the poles, it sinks about 200,000 kilometers (124,000 miles) back into the convection zone and starts returning toward the equator at a speed of about one meter (three feet) per second or slower. The increasingly concentrated fields become stretched and twisted by the internal rotation of the Sun as they near the equator, gradually becoming less stable than the surrounding plasma. This eventually causes coiled-up magnetic field lines to rise up, tear through the Sun’s surface, and create new sunspots.

The subsurface plasma flow used in the model has been verified with the relatively new technique of helioseismology, based on observations from both NSF– and NASA–supported instruments. This technique tracks sound waves reverberating inside the Sun to reveal details about the interior, much as a doctor might use an ultrasound to see inside a patient.

Predicting Cycles 24 and 25

The Predictive Flux-transport Dynamo Model is enabling NCAR scientists to predict that the next solar cycle, known as Cycle 24, will produce sunspots across an area slightly larger than 2.5% of the visible surface of the Sun. The scientists expect the cycle to begin in late 2007 or early 2008, which is about 6 to 12 months later than a cycle would normally start. Cycle 24 is likely to reach its peak about 2012.

By analyzing recent solar cycles, the scientists also hope to forecast sunspot activity two solar cycles, or 22 years, into the future. The NCAR team is planning in the next year to issue a forecast of Cycle 25, which will peak in the early 2020s.

"This is a significant breakthrough with important applications, especially for satellite-dependent sectors of society," explains NCAR scientist Peter Gilman.

The NCAR team received funding from the National Science Foundation and NASA’s Living with a Star program.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>