Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s turbulence stirs things up slower than expected

06.03.2006


In a simple world rivers would flow in straight lines, every airplane ride would be smooth, and we would know the daily weather 10 years into the future. But the world is not simple -- it is turbulent.



That’s good news, since turbulence helps drive natural processes essential for life. Unfortunately it also means we are never 100 percent sure it won’t rain on Saturday.

"Turbulence is the last major unsolved problem of classical physics," explains Eberhard Bodenschatz, professor of physics who studies turbulence with his research group at Cornell and the Max Planck Institute (MPI) for Dynamics and Self-Organization, Germany.


The group recently moved closer to a solution by measuring how two tiny polystyrene spheres in turbulent water separate based on how far apart they initially are from each other. The results were published in the Feb. 10 issue of Science.

The findings suggest that, for almost every turbulent flow on Earth, including violent volcanic eruptions, particles separate more slowly than expected. This discovery could help improve models of dispersion of pollutants and bioagents and even help explain how crustaceans find food, mates and predators by sensing odors in the ocean depths.

Turbulence occurs when a gas or fluid, like air or water, is pushed at high speeds or on large scales, and is characterized by chaotic, seemingly random, flow patterns. Because of its complexity, turbulence is very efficient at mixing: a solution of two liquids, such as cream and coffee, will mix much more quickly if the flow is turbulent than if it is not.

As a white-water rafter might toss a stick into rapids to observe its behavior before jumping in, physicists watch particles in turbulence to understand the flow. A key measurement is how quickly two particles will separate, or "pair dispersion."

In the 1920s, British scientist L.F. Richardson predicted that pair dispersion should grow quickly, as time multiplied by itself twice (time cubed), independent of the initial separation of the pair -- a statement known as the Richardson-Obukhov law. In the 1950s, Australian-born Cambridge mathematician G.K. Batchelor added the amendment that for short timescales, pair dispersion is not independent of initial separation and should grow more slowly, as time multiplied by itself (time squared).

Until recently, the difficulty of photographing tiny particles at high speeds made direct measurements of these predictions impossible.

"When we first planned these experiments, fast enough cameras didn’t exist," said Cornell graduate student Nicholas Ouellette, a co-author of the Science article. The final experiment used three high-tech digital cameras able to record up to 27,000 pictures per second of several hundred polystyrene spheres simultaneously in 8 cubic inches of water. The diameter of the spheres was about one-fourth the thickness of a human hair -- a thickness needed because it matched the smallest eddies in the turbulent water.

The experiment showed that when the initial separation of the spheres is large relative to the turnover time of the eddies, they will obey Batchelor dispersion, independent of the turbulence’s severity. However, if the initial separation is smaller, then the particles will only exhibit Batchelor dispersion initially before transitioning to behavior consistent with the Richardson-Obukhov law.

"Right now new technology -- like our fast cameras -- is making experiments possible that just 10 years ago were considered impossible. It’s a very exciting time to be in the field," Ouellette said.

The other authors of the Science paper are Haitao Xu, Cornell and MPI for Dynamics and Self-Organization, lead author Mickal Bourgoin, Laboratoire des Écoulenments Géophysiques et Industriels, France, and Jacob Berg, Ris National Laboratory, Denmark.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>