Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s turbulence stirs things up slower than expected

06.03.2006


In a simple world rivers would flow in straight lines, every airplane ride would be smooth, and we would know the daily weather 10 years into the future. But the world is not simple -- it is turbulent.



That’s good news, since turbulence helps drive natural processes essential for life. Unfortunately it also means we are never 100 percent sure it won’t rain on Saturday.

"Turbulence is the last major unsolved problem of classical physics," explains Eberhard Bodenschatz, professor of physics who studies turbulence with his research group at Cornell and the Max Planck Institute (MPI) for Dynamics and Self-Organization, Germany.


The group recently moved closer to a solution by measuring how two tiny polystyrene spheres in turbulent water separate based on how far apart they initially are from each other. The results were published in the Feb. 10 issue of Science.

The findings suggest that, for almost every turbulent flow on Earth, including violent volcanic eruptions, particles separate more slowly than expected. This discovery could help improve models of dispersion of pollutants and bioagents and even help explain how crustaceans find food, mates and predators by sensing odors in the ocean depths.

Turbulence occurs when a gas or fluid, like air or water, is pushed at high speeds or on large scales, and is characterized by chaotic, seemingly random, flow patterns. Because of its complexity, turbulence is very efficient at mixing: a solution of two liquids, such as cream and coffee, will mix much more quickly if the flow is turbulent than if it is not.

As a white-water rafter might toss a stick into rapids to observe its behavior before jumping in, physicists watch particles in turbulence to understand the flow. A key measurement is how quickly two particles will separate, or "pair dispersion."

In the 1920s, British scientist L.F. Richardson predicted that pair dispersion should grow quickly, as time multiplied by itself twice (time cubed), independent of the initial separation of the pair -- a statement known as the Richardson-Obukhov law. In the 1950s, Australian-born Cambridge mathematician G.K. Batchelor added the amendment that for short timescales, pair dispersion is not independent of initial separation and should grow more slowly, as time multiplied by itself (time squared).

Until recently, the difficulty of photographing tiny particles at high speeds made direct measurements of these predictions impossible.

"When we first planned these experiments, fast enough cameras didn’t exist," said Cornell graduate student Nicholas Ouellette, a co-author of the Science article. The final experiment used three high-tech digital cameras able to record up to 27,000 pictures per second of several hundred polystyrene spheres simultaneously in 8 cubic inches of water. The diameter of the spheres was about one-fourth the thickness of a human hair -- a thickness needed because it matched the smallest eddies in the turbulent water.

The experiment showed that when the initial separation of the spheres is large relative to the turnover time of the eddies, they will obey Batchelor dispersion, independent of the turbulence’s severity. However, if the initial separation is smaller, then the particles will only exhibit Batchelor dispersion initially before transitioning to behavior consistent with the Richardson-Obukhov law.

"Right now new technology -- like our fast cameras -- is making experiments possible that just 10 years ago were considered impossible. It’s a very exciting time to be in the field," Ouellette said.

The other authors of the Science paper are Haitao Xu, Cornell and MPI for Dynamics and Self-Organization, lead author Mickal Bourgoin, Laboratoire des Écoulenments Géophysiques et Industriels, France, and Jacob Berg, Ris National Laboratory, Denmark.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>