Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forecasting the Seas

06.03.2006


Shipping companies can route ships more safely and efficiently. Ocean search-and-rescue can operate more effectively. Meteorologists and climatologists now have a tool to provide long-range weather prediction more accurately. Navies too can perform more accurate anti-submarine surveillance. And environmental managers now have a mechanism to track pollution, algal blooms, or emergent situations such as oil spills. And, this is all due to a unique three-dimensional ocean model that has been developed by Rosenstiel School researchers in collaboration with scientists at the Naval Research Laboratory.

Featured in the March issue of Oceanography, the HYbrid Coordinate Ocean Model (HYCOM) is the critical part of data assimilative systems at the Naval Research Laboratory and at NOAA’s National Center for Environmental Prediction. The Navy will tap the velocities, temperature, and salinities of the HYCOM prediction system to force smaller models that provide even higher resolution that can account for things like rivers, tides, etc. in real-time for anywhere in the world. NOAA’s new Real-Time Ocean Forecast System will provide mariners with “nowcasts” and five-day forecasts for the entire North Atlantic Ocean. While other ocean models have been developed in the past, HYCOM is unique not only because it provides three-dimensional, global data that is of fine enough resolution to factor in the real-time displacements in currents caused by eddies, but also because of its flexibility in modeling both coastal and deep ocean regions (http://www.hycom.org). This enhanced understanding of the ocean offers invaluable applications.

“While a computer model may sound rather abstract to non-scientists, it’s exactly what can help clarify forecasting and minimize or prevent impacts from natural hazards on the seas,” said Dr. Eric Chassignet, principal investigator and a Rosenstiel School professor in meteorology and physical oceanography. Chassignet also just published a related book, titled Ocean Weather Forecasting: An Integrated View of Oceanography, which is now available.



Scientists often develop computer models to fill in the gaps where they cannot make real-world observations of natural phenomenon. In the case of ocean processes, however, modelers start with fluid dynamics that are the laws of physics that explain how fluid – and in this case, the ocean – responds to different variables. All fluids obey these same laws of physics, and so the researchers end up with a variety of equations that can be simplified to create simple ocean models or made very complex as the scientists try to expand time and space constraints. The HYCOM model will help forecasters and others understand the ocean’s currents, temperature, salinity, and other variables better.

“The broad partnership of institutions that is collaborating to develop and demonstrate the performance and applications of HYCOM has already been able to produce realistic imagery in real-time on ocean basin-scales (and soon to be global) in hindcast, nowcast, and prediction modes,” Chassignet said. He authored the Oceanography article with Dr. George Halliwell and Dr. Ashwanth Srinivasan, also scientists at the Rosenstiel School, and representation from the Navy Research Laboratory, NOAA, and the University of North Carolina.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world’s premier marine and atmospheric research institutions.

Ivy F. Kupec | EurekAlert!
Further information:
http://www.hycom.org
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>