Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pear-shaped particles probe big-bang mystery

21.02.2006


A University of Sussex-led team of scientists is ahead in the race to solve one of the biggest mysteries of our physical world: why the Universe contains the matter that we’re made of.



In a paper submitted to Physical Review Letters, the team has just announced the results of a ten-year project to make one of the most sensitive measurements ever of sub-atomic particles. Theories attempting to explain the creation of matter in the aftermath of the Big Bang now have to be tuned up - or thrown out.

Physicist Dr Philip Harris, the head of the Sussex group, says: "This represents a significant breakthrough, and a real success for UK particle physics. Although there are a couple of other teams in the world working in this same area, we’re managing to stay ahead of them. It’s been said in the past that this experiment has disproved more theories than any other in the history of physics - and now it’s delivering the goods all over again."


The question that has vexed scientists and astronomers for years is why there is more matter in the Universe than anti-matter. Both were formed at the time of the Big Bang, about 13.7 billion years ago. For every particle formed, an anti-particle should also have been formed. Almost immediately, however, the equal numbers of particles and anti-particles would have annihilated each other, leaving nothing but light. But a tiny asymmetry in the laws of nature resulted in a little matter being left over, spread thinly within the empty space of the Universe. This became the stars and planets that we see around us today.

The only way scientists can verify their theories to explain this anomaly is to study the corresponding asymmetry in sub-atomic particles, by looking for slight "pear-shaped" distortions in their otherwise spherical forms. It has taken five decades of research to reach the stage where measurements of these particles, called neutrons, have become sensitive enough to test the very best candidate theories. Neutrons are electrically neutral, but they have positive and negative charges moving around inside them. If the centres of gravity of these charges aren’t in the same place, it would result in one end of the neutron being slightly positive, and the other slightly negative. This is called an electric-dipole moment, and it is the phenomenon that physicists have been working to find for the past 50 years. Spinoffs from the original pioneering work in this area include atomic clocks and magnetic-resonance imaging.

The new result shows that the distortion in the subatomic particles is far smaller than most of the origin-of-matter theories had predicted - if the neutron were the size of the Earth, the distortion would still be less than the size of a bacterium. "This will really help to constrain theories that attempt to go beyond our current understanding of the fundamental laws of physics", says Dr Harris. "For some of them, it’s back to the drawing board; but for the better ones, it will definitely show them the way forwards."

To carry out the research the Sussex group, together with scientists from the Rutherford Appleton Laboratory and the Institut Laue Langevin in Grenoble, built a special type of atomic clock that used spinning neutrons instead of atoms. It applied 120,000 volts to a quartz "bottle" that was filled regularly with neutrons captured from a reactor. The clock frequency was measured through nuclear magnetic resonance.

The team has now expanded to include Oxford University and the University of Kure in Japan. They are busy developing a new version of the experiment: By submerging their neutron-clock in a bath of liquid helium, half a degree above absolute zero, they will increase their sensitivity a hundredfold.

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>