Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pear-shaped particles probe big-bang mystery

21.02.2006


A University of Sussex-led team of scientists is ahead in the race to solve one of the biggest mysteries of our physical world: why the Universe contains the matter that we’re made of.



In a paper submitted to Physical Review Letters, the team has just announced the results of a ten-year project to make one of the most sensitive measurements ever of sub-atomic particles. Theories attempting to explain the creation of matter in the aftermath of the Big Bang now have to be tuned up - or thrown out.

Physicist Dr Philip Harris, the head of the Sussex group, says: "This represents a significant breakthrough, and a real success for UK particle physics. Although there are a couple of other teams in the world working in this same area, we’re managing to stay ahead of them. It’s been said in the past that this experiment has disproved more theories than any other in the history of physics - and now it’s delivering the goods all over again."


The question that has vexed scientists and astronomers for years is why there is more matter in the Universe than anti-matter. Both were formed at the time of the Big Bang, about 13.7 billion years ago. For every particle formed, an anti-particle should also have been formed. Almost immediately, however, the equal numbers of particles and anti-particles would have annihilated each other, leaving nothing but light. But a tiny asymmetry in the laws of nature resulted in a little matter being left over, spread thinly within the empty space of the Universe. This became the stars and planets that we see around us today.

The only way scientists can verify their theories to explain this anomaly is to study the corresponding asymmetry in sub-atomic particles, by looking for slight "pear-shaped" distortions in their otherwise spherical forms. It has taken five decades of research to reach the stage where measurements of these particles, called neutrons, have become sensitive enough to test the very best candidate theories. Neutrons are electrically neutral, but they have positive and negative charges moving around inside them. If the centres of gravity of these charges aren’t in the same place, it would result in one end of the neutron being slightly positive, and the other slightly negative. This is called an electric-dipole moment, and it is the phenomenon that physicists have been working to find for the past 50 years. Spinoffs from the original pioneering work in this area include atomic clocks and magnetic-resonance imaging.

The new result shows that the distortion in the subatomic particles is far smaller than most of the origin-of-matter theories had predicted - if the neutron were the size of the Earth, the distortion would still be less than the size of a bacterium. "This will really help to constrain theories that attempt to go beyond our current understanding of the fundamental laws of physics", says Dr Harris. "For some of them, it’s back to the drawing board; but for the better ones, it will definitely show them the way forwards."

To carry out the research the Sussex group, together with scientists from the Rutherford Appleton Laboratory and the Institut Laue Langevin in Grenoble, built a special type of atomic clock that used spinning neutrons instead of atoms. It applied 120,000 volts to a quartz "bottle" that was filled regularly with neutrons captured from a reactor. The clock frequency was measured through nuclear magnetic resonance.

The team has now expanded to include Oxford University and the University of Kure in Japan. They are busy developing a new version of the experiment: By submerging their neutron-clock in a bath of liquid helium, half a degree above absolute zero, they will increase their sensitivity a hundredfold.

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>