Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dawn of deep ocean mining

20.02.2006


We’re on the brink of the era of deep ocean mining, says a global pioneer in the study of sea floor mineral deposits. Dr. Steven Scott, a geologist at the University of Toronto, in Toronto, Canada says that advances in marine geology and deep ocean technology have combined to make it realistic to go more than two kilometres underwater for gold and other mineral treasures.



It’s a transformation that he says has evoked a knee-jerk reaction over the possible environmental impacts of this mining, which he believes could be less destructive than terrestrial mining.

Presently, the world’s first two neophyte marine mining companies, Nautilus Minerals and Neptune Minerals are actively exploring the possibility of mining deep sea floor deposits. Neptune is assessing deposits it holds the rights to in territorial waters off the north coast of New Zealand’s North Island. Nautilus and its joint venture partner Placer Dome, a Canadian gold mining company, are collecting samples from a deposit to which Nautilus holds the rights in the Bismarck Sea off the eastern coast of Papua New Guinea.


The big question for these companies is the economic potential of undersea deposits of polymetallic sulphides. These sulphur-rich sea floor ore bodies are produced worldwide in underwater volcanic regions by "black smokers." The black smokers are formed when seawater seeps into the porous sea bottom, is heated and re-emerges through vents carrying dissolved minerals. When the hot water hits the cold sea floor water, the minerals precipitate, creating chimney-like towers called black smokers. Over time, these towers collapse and accumulate to form ore deposits, some of which are rich in gold, silver, copper, lead and zinc.

Dr. Scott was the first mining geologist to explore black smokers. In 1982 he joined members of the Scripps Institute of Oceanography and the Woods Hole Oceanographic Institution in the submersible Alvin to explore newly discovered black smokers 2,000 metres below the waves in the Gulf of California off the coast of Mexico. He says that after more than two decades of promoting the possibility of mining the deposits created by black smokers, the launch of the present ventures is a move that’s required mining companies to cross a watery psychological barrier.

"Twenty years ago, most mining companies didn’t want to hear about this possibility. They thought it was too difficult. But now some are seeing that it’s a lot easier to go down through a couple of thousand metres of water than through a couple of thousand metres of rock," says Dr. Scott, who is the Director of the Scotiabank Marine Geology Research Laboratory and the Norman B. Keevil Professor of Ore Genesis at the University of Toronto.

Presently the deepest undersea mines – diamond mines off the coast of southern Africa – are under just a few hundred metres of water. But Dr. Scott points to the offshore oil and gas industry as an example of the possibility for change. The international oil and gas industry went offshore starting in the mid-1940s. Today, about a third of the world’s oil comes from under the sea. There are producing wells in 1,500 metres of water off the coast of Brazil, and there’s drilling at 2,500 metres depth in the Gulf of Mexico.

The key challenge for new marine mining companies will be developing the technology to extract the ore from the watery depths, says Dr. Scott. He envisions the use of "deep sea versions of robotic coal mining machines" with the ore piped up to mining ships, or semi-submersible platforms as used by the offshore oil industry. He notes that deep sea robotics is a mature industry, driven in large part by the needs of offshore oil exploration and recovery.

Deep sea mining technology was given a major kick-start, notes Dr. Scott, by the approximately $650 million spent internationally in an aborted effort to develop sea floor manganese nodule mining technology in the 1970s and ’80s. Manganese nodules, often rich in nickel and copper, are formed by the slow precipitation of the minerals from seawater. The nodules cover vast areas of the deep ocean floor known as the abyssal plains.

Dr. Scott was initially drawn to black smokers as a way of understanding the formation of strikingly similar terrestrial polymetallic sulphide deposits, such as those mined at the Kidd Creek copper and zinc mine in northern Ontario, Canada, and in many other countries in the world, including the United States.

"We wanted to know whether marine geology held clues for the occurrence of these terrestrial deposits. And it does," says Dr. Scott.

Now they’ve become "living laboratories" for understanding the formation of terrestrial and marine polymetallic sulphide deposits. One of Dr. Scott’s postdoctoral students just returned from a vessel drilling the Nautilus claims off the Papua New Guinea coast. She is exploring the role that bacteria play in creating these mineral deposits.

"Getting samples from the interior of these deposits is rare," says Dr. Scott. "What we’re interested in from the perspective of pure science is what microorganisms are in these deposits and what they’re doing. Are they in fact causing mineralization?"

Reflecting on the environmental impacts of potential sea floor mining, Dr. Scott says that he believes it could be less damaging than terrestrial mining.

"The ocean mining companies are going to have environmental problems like there are with any industrial process," says Dr. Scott. "There’s understandably going to be legitimate concern from many in the public."

According to Dr. Scott, sea floor mining avoids many of the problems associated with terrestrial mining. There’s no acid mine drainage, since the acids are neutralized by the alkaline sea water. The sulphide deposits are on the sea floor, so there would be no excavation and the resulting waste rock piles, and no permanent structures would be left behind. The mining also wouldn’t touch active black smokers, regions that are known to have a rich diversity of submarine life.

And while he sees their economic potential, Dr. Scott has also already led the way in protecting black smokers. He was the geologist on the scientific team that spearheaded the case for the world’s first deep ocean park, the Endeavour segment of black smokers along the Pacific submarine Juan de Fuca Ridge off Canada’s west coast.

Steven Scott | EurekAlert!
Further information:
http://www.geology.utoronto.ca
http://www.neptuneminerals.com
http://www.nautilusminerals.com

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>