Early Americans faced rapid late Pleistocene climate change and chaotic environments

The environment encountered when the first people emigrated into the New World was variable and ever-changing, according to a Penn State geologist.


“The New World was not a nice quiet place when humans came,” says Dr. Russell Graham, associate professor of geology and director of the Earth & Mineral Sciences Museum.

Archaeologists agree that by 11,000 years ago, people were spread across North and South America, but evidence is building for an earlier entry into the New World, a date that would put human population of North and South America firmly in the Pleistocene.

“We want to know what it was like back then,” says Graham. “What did they have to deal with?”

The Pleistocene Holocene transition took place about 11,000 years ago and caused the extinction of a large number of animal species including mammoths, mastodons and ground sloths. The Holocene looked very different from the Pleistocene.

“We now realize that climate changes extremely rapidly,” Graham told attendees at the annual meeting of the American Association for the Advancement of Science today (Feb.19) in St. Louis, Mo. “The Pleistocene to Holocene transition occurred in about 40 years.”

As a result, animals and plants shifted around and the people living in the New World had to adapt so that they could find the necessary resources to survive. Graham likened the change to the difference between shopping at a WalMart where there is great abundance and large variety – the Pleistocene – to suddenly having to shop at a corner convenience store – the Holocene. In human terms this means that what grandparents knew to be true about finding resources, could be untrue and not helpful to grandchildren.

During the Pleistocene large eastern coastal resources existed, including walruses, south, as far as Virginia, seals and a variety of fish. Mammoth, caribou and mastodons were plentiful across the continent as well as smaller animals. The situation was not identical in all places across North America because, during segments of the Pleistocene, large portions of the Eastern North American continent were covered in ice, while western locations were ice free much further north.

“The Holocene climate is much more stable than the Pleistocene – warmer but more stable,” says Graham. “The environment, however, became more homogeneous, there was less variety.”

Graham argues that the Pleistocene experienced a series of rapid climate changes that created patchiness in the environment, but that once the climate change that signaled the beginning of the Holocene occurred, the climate settled down. Humans coming into the New World during the late Pleistocene would have encountered an environment shaped by rapid changes creating variety in available food sources both animal and vegetable. The groups of people would have to adapt continually and find new resources, but the variety of resources was out there. After the Holocene took hold, there was less need to adapt constantly, but also fewer options in resources.

Archaeologists and geologists debate whether the climate change at the Pleistocene Holocene transition caused the extinction of the mega fauna or if the influx of humans did in the large animals. Graham believes that it was the unstable changing rapidly changing climate, not human predation that killed the large Pleistocene animals.

Media Contact

A’ndrea Elyse Messer EurekAlert!

More Information:

http://www.psu.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors