Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snows of Kilimanjaro disappearing, glacial ice loss increasing

15.02.2006


Five years after warning that the famed ice fields on Tanzania ’s Mount Kilimanjaro may melt, Ohio State University researchers have sadly found that their prediction is coming true.


The five years of warming have taken a toll on the southern ice fields atop Kilimanjaro.



And the impact of the loss of that ice atop Africa ’s highest peak – disregarding the loss of tourism that will follow the vanishing ice – could add to the heavy drought burden already facing those living near that mountain.

For Lonnie Thompson, professor of geological sciences, his third expedition to the summit of Kilimanjaro was all too much like visiting a sick friend in failing health.


In 2002, Thompson and his colleagues shocked the scientific community with their prediction that the ice fields capping the mountain would disappear between 2015 and 2020, the victims, at least in part, of global warming. Returning to his campus office last week, he admits that nothing has happened to alter that prediction.

In fact, the mountain’s ice fields may disappear sooner.

“The change there is so dramatic,” he said. “We can see it both in the field and from aerial photographs of the mountaintop. I would say it is on track to disappear, and the rate of ice loss may even be accelerating.

“But we need to look at the numbers to confirm that.”

The “numbers” he refers to are the combined data gathered from both the most recent and earlier expeditions, and from aerial surveys of the ice fields. By comparing these with past data, they can calculate just how much of Kilimanjaro’s ice has vanished. About 82 percent of the ice fields were lost between the time they were first mapped in 1912 and 2000.

In 2002, they assessed the changes in the mountain’s ice cover, comparing aerial photos from the year 2000 with those from 1962. That showed that the tops of the ice fields had lowered by at least 17 meters (nearly 56 feet) since 1962 -- an average reduction of about a half-meter in height each year.

The latest expedition added more chilling evidence:

• At three places on the margin of the northern ice field, a 50-meter (164-foot) high wall of ice has retreated between 4.8 and 5 meters (about 16 feet) since 2002;

• A massive hole that reaches through the ice down to the bedrock has formed in the middle of the Furtwangler glacier, as well as in the northern ice field, two of the ice bodies on the mountain. Those holes should split the Furtwangler glacier in two within the next six months; and the northern ice field in the next two years.

• The thickness of the ice fields is waning rapidly. The northern ice field has lost 2 meters (6.5 feet) of ice from the surface, the Furtwangler has lost more than 3 meters (10 feet), and the southern ice fields have lost between 4 and 5 meters (13 and 16.5 feet).

Thompson said that the loss of more than 3 meters from the surface of the Furtwangler is serious since that entire glacier was only 9 meters thick in 2000 at their previous drill site. “There has been no accumulation of new ice forming on any of those ice fields since 2000,” he said.

The five years of warming have taken a toll on the southern ice fields atop Kilimanjaro.
“That’s an enormous amount of ice lost,” Thompson said.

“With the new aerial photographs, we will be able to calculate for the first time, not only the area of ice loss, but also the volume of water lost, since the last photos were taken in 2000.

Tanzania’s tourist trade depends in large part on international visitors. Showcased by Ernest Hemingway’s short story, The Snows of Kilimanjaro, ice fields so near the equator are a major attraction, and if they melt, so too, perhaps, will most of the tourism, Thompson said.

But the impact on local water supplies is likely to be even more serious. The population living around the base of the mountain depends on meltwater flowing from the glaciers, and precipitation in the rainforests that cover its flanks to supply the springs that provide water for both drinking and irrigation.

What isn’t clear, Thompson said, is the proportion of the water that comes from each source and the age of the spring and well water currently being consumed. If most comes from the rainforests, then the impact is lessened, but if glaciers provide the larger portion, the loss of the ice fields could be catastrophic.

The Ohio State team will look for answers from hundreds of water samples taken from springs and lakes in the area. Along with the same chemical tests they make on ice cores, they will also test the water for tritium, a radioactive isotope of hydrogen detectable in the water. Above-ground tests of nuclear weapons in the 1950s and 1960s dramatically increased the normal levels of tritium in water.

“If the water samples have high levels of tritium, it means that more of the spring water is younger and likely comes from the rain forest,” he said.

“But if the water is low in tritium, it means that the water is older, and that more of it originated from Kilimanjaro’s ice fields. And if the ice fields vanish, so might a large portion of the source of spring water.” Water samples were also collected for C-14 dating in case the tritium values prove so low that the age of the water cannot be determined.

“What will happen to the water supply for these people when the glaciers disappear?” he asked, “And disappear they surely will.”

Along with Thompson, other members of the field research team include Bryan Mark, assistant professor of geography; Jeffrey McKenzie, a postdoctoral fellow, and Sangsuk Lee, a Comer Fellow, both with OSU’s Byrd Polar Research Center. Byrd Center researcher Henry Brecher will be preparing the maps from this season’s aerial photos.

The project was supported by Ohio State University

Lonnie Thompson | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>