Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frozen methane chunks not responsible for abrupt increases in atmospheric methane

10.02.2006


Icy chunks of frozen methane and water are not responsible for the periodic increases in atmospheric methane recorded in Greenland ice cores, according to a Penn State geoscientist.



The ice core samples from the Greenland Ice Sheet Project II cover the last 40,000 years and present a picture of the Earth’s climate over that time span.

"There are two hypotheses for the cause of the rapid increase in methane seen in the ice core records," says Dr. Todd Sowers, research associate in geosciences. "Some researchers believe that clathrates were the source of the methane while other researchers believe it was generated in wetlands."


Clathrates are icy balls of methane and water found in the continental margin sediments – 200 miles out to sea. They form when methanogenic bacteria deep in marine sediments generate methane which rises through the sediment and, if the temperatures and pressures are right, form balls of ice.

Conveniently, methane in clathrates and methane produced from wetlands are produced by different biochemical processes and consequently have differing ratios of the two stable hydrogen isotopes – hydrogen and deuterium. Methanogenic bacteria in marine sediments convert carbon dioxide into methane and water while wetland methane is a byproduct of fermentation. If clathrates suddenly released methane into the atmosphere, the ratio of the heavier isotope of hydrogen, deuterium, to the normal hydrogen would increase due to the elevated nature of the deuterium/hydrogen ratio associated with clathrates.

Sowers looked at methane trapped in the layers of ice preserved in the GISP II ice core. He sampled the layers every 1,000 years between 8,000 and 25,000 years, and every 30 years during periods when atmospheric methane levels increase abruptly to provide a finer assessment of the cause of the elevated methane levels.

"Hydrogen isotope ratios were stable during these abrupt warming episodes," says Sowers in his report in today’s (Feb. 10) issue of Science. "The increased methane that accompanied the warming did not come from marine clathrates."

While Sowers can rule out clathrates during the abrupt events, his data do provide new information on the sources of methane that caused the long-term methane increase during the last glacial termination. Sowers observed elevated isotope ratios during the last glacial period compared to today.

There are a handful of factors that may have contributed to the observed change in the isotope ratios. These factors include a change in terrestrial vegetation type, lowered sea level and/or a temperature dependent isotope effect associated with colder glacial temperature.

"Even if these things happened, the total impact on the isotope budget would have been very small and would not account for the elevated isotope ratios during the last glacial period," says Sowers. "That leaves us with two other possibilities, changes in wetland systematics and/or increased natural gas emissions during the glacial period."

If natural gas seeping out of deposits beneath the oceans decreased throughout the glacial termination, then the methane isotope signature would follow the observed record. Methane emissions from natural gas might be higher during the glacial period due to lowered sea level that reduced the pressure on the undersea natural gas seeps allowing more gas to escape directly to the atmosphere.

"This possibility cannot be discounted," says Sowers. "However, I think the answer probably lies in changes in wetland methane emissions."

Climate could alter wetlands in two ways. First, during the termination, methane emissions from wetlands would increase if the areal extent of wetlands increased with warmer climates. Second, if the wetlands were drier during the glacial period, then the methane generated at depth would have a greater chance of being consumed by methanotrophic bacteria inhabiting the oxygenated region immediately above the lowered water tables.

"Methane eating bacteria prefer to consume methane with the lighter hydrogen isotope, which tips the ratio of heavy to light hydrogen in the methane emitted to the atmosphere toward heavy," says Sowers. "This would create a higher hydrogen isotope ratio that is consistent with that found during the last glacial period."

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>