Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frozen methane chunks not responsible for abrupt increases in atmospheric methane

10.02.2006


Icy chunks of frozen methane and water are not responsible for the periodic increases in atmospheric methane recorded in Greenland ice cores, according to a Penn State geoscientist.



The ice core samples from the Greenland Ice Sheet Project II cover the last 40,000 years and present a picture of the Earth’s climate over that time span.

"There are two hypotheses for the cause of the rapid increase in methane seen in the ice core records," says Dr. Todd Sowers, research associate in geosciences. "Some researchers believe that clathrates were the source of the methane while other researchers believe it was generated in wetlands."


Clathrates are icy balls of methane and water found in the continental margin sediments – 200 miles out to sea. They form when methanogenic bacteria deep in marine sediments generate methane which rises through the sediment and, if the temperatures and pressures are right, form balls of ice.

Conveniently, methane in clathrates and methane produced from wetlands are produced by different biochemical processes and consequently have differing ratios of the two stable hydrogen isotopes – hydrogen and deuterium. Methanogenic bacteria in marine sediments convert carbon dioxide into methane and water while wetland methane is a byproduct of fermentation. If clathrates suddenly released methane into the atmosphere, the ratio of the heavier isotope of hydrogen, deuterium, to the normal hydrogen would increase due to the elevated nature of the deuterium/hydrogen ratio associated with clathrates.

Sowers looked at methane trapped in the layers of ice preserved in the GISP II ice core. He sampled the layers every 1,000 years between 8,000 and 25,000 years, and every 30 years during periods when atmospheric methane levels increase abruptly to provide a finer assessment of the cause of the elevated methane levels.

"Hydrogen isotope ratios were stable during these abrupt warming episodes," says Sowers in his report in today’s (Feb. 10) issue of Science. "The increased methane that accompanied the warming did not come from marine clathrates."

While Sowers can rule out clathrates during the abrupt events, his data do provide new information on the sources of methane that caused the long-term methane increase during the last glacial termination. Sowers observed elevated isotope ratios during the last glacial period compared to today.

There are a handful of factors that may have contributed to the observed change in the isotope ratios. These factors include a change in terrestrial vegetation type, lowered sea level and/or a temperature dependent isotope effect associated with colder glacial temperature.

"Even if these things happened, the total impact on the isotope budget would have been very small and would not account for the elevated isotope ratios during the last glacial period," says Sowers. "That leaves us with two other possibilities, changes in wetland systematics and/or increased natural gas emissions during the glacial period."

If natural gas seeping out of deposits beneath the oceans decreased throughout the glacial termination, then the methane isotope signature would follow the observed record. Methane emissions from natural gas might be higher during the glacial period due to lowered sea level that reduced the pressure on the undersea natural gas seeps allowing more gas to escape directly to the atmosphere.

"This possibility cannot be discounted," says Sowers. "However, I think the answer probably lies in changes in wetland methane emissions."

Climate could alter wetlands in two ways. First, during the termination, methane emissions from wetlands would increase if the areal extent of wetlands increased with warmer climates. Second, if the wetlands were drier during the glacial period, then the methane generated at depth would have a greater chance of being consumed by methanotrophic bacteria inhabiting the oxygenated region immediately above the lowered water tables.

"Methane eating bacteria prefer to consume methane with the lighter hydrogen isotope, which tips the ratio of heavy to light hydrogen in the methane emitted to the atmosphere toward heavy," says Sowers. "This would create a higher hydrogen isotope ratio that is consistent with that found during the last glacial period."

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>