Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Roof of the world’ tells tale of colliding continents, Earth’s interior

09.02.2006


Geologists have learned that the height of the Tibetan Plateau, a vast, elevated region of central Asia sometimes called "the roof of the world," has remained remarkably constant for at least 35 million years.



David Rowley from the University of Chicago and Brian Currie of Miami University in Ohio report their finding in the Feb. 9 issue of the journal Nature.

Before their last expedition to Tibet, the geologists expected to find evidence that the plateau was rising 35 million years ago, the result of large-scale geologic forces grinding India and Asia against one another. They found instead that the plateau has stood at its current high elevation for at least 35 million years.


The best explanation for Rowley and Currie’s finding: the plateau has widened progressively northward as the Earth’s crust thickened. "This explanation is at odds with a popular theory that has survived since the 1980s," said geological oceanographer Chris Beaumont of Dalhousie University in Halifax, Nova Scotia, Canada.

India and Asia began colliding 50 million years ago as a result of plate tectonics, a large-scale geologic force that slowly moves the continents around the Earth’s surface. The collision took place in an area that once may have resembled the tropical Indonesian island of Sumatra, and it produced the Tibetan Plateau. Today, the plateau stretches for 190,000 square miles at an elevation of approximately 16,000 feet.

"It looks not a whole lot different in places from Kansas," said Rowley, Professor and Chairman of the Geophysical Sciences Department at Chicago. "You could convince yourself that you’re in Kansas, except that you’re breathing a little too hard."

According to a popular theory, both the Earth’s crust--the planet’s outermost solid layer--and the upper portion of the mantle layer that lies below the crust thicken as the continents collide. Then the crust containing the plateau would have "bobbed up," Beaumont explained, while the mantle fell away and sank deep into the Earth.

Rowley and Currie’s research, which is funded by the National Science Foundation, supports the idea that the collision has deformed the crust, but not the mantle. "The bottom of the crust is weak and any attempt to increase the elevation increases the stress on the bottom of the crust, and that crust is now capable of flowing," Rowley explained.

The Nature paper is based on a technique that Rowley and a colleague developed in the late 1990s to determine the elevation of ancient land surfaces. "It turns out that elevation is one of the most sensitive monitors of large-scale processes happening within the Earth," he said.

The technique relies on precise measurement of oxygen isotopes, different varieties of oxygen atoms that are found in rocks formed at various elevations. Water vapor derived from the oceans displays a well-defined isotopic composition that changes in a predictable way as air masses rise, cool and condense with elevation.

As precipitation seeps into the soil, it becomes incorporated into nodules of calcium carbonate, a chemical compound found in rocks around the world. An oxygen isotopic analysis of these nodules reveals the elevation at which they were created, as Rowley and his University of Chicago colleague Ray Pierrehumbert reported in 2001.

The technique is accurate to within approximately 2,000 feet, and it is especially sensitive at elevations of three to five kilometers (9,900 to 16,500 feet). "For asking questions about the height of the Himalayas, the height of Tibet, the height of the Andes, it’s terrific," Rowley said. "But if you go to small mountain ranges or small elevation differences, you’re probably not going to be able to say much with confidence."

Previous efforts aimed at reconstructing the elevation history of mountain ranges depended on comparing tree species that live today at various elevations with the species found in the distant past as indicated by fossilized leaves and pollen. But temperature, rainfall and climate change can influence the distribution of tree species, along with elevation. "It’s not always clear which one is the driver," Rowley said.

As for the Tibetan Plateau, Rowley plans to examine even older rocks to see if he can take a scientific snapshot of the area as it began to rise. From this, scientists will be better able to answer a critical question: how fast does the concentration of heat-generating radioactive elements in thickening crust limit its strength?

"Some people had earlier argued that it took, 10, 20, 30 million years before you got enough heat production to limit that strength," Rowley said, an argument that his data are beginning to support.

"The significance of this research should not be underestimated," Beaumont said. "It demonstrates how a critical observation has the potential to advance our understanding of continental deformation."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Earth Sciences:

nachricht Climate change: In their old age, trees still accumulate large quantities of carbon
17.08.2017 | Universität Hamburg

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>