Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Roof of the world’ tells tale of colliding continents, Earth’s interior

09.02.2006


Geologists have learned that the height of the Tibetan Plateau, a vast, elevated region of central Asia sometimes called "the roof of the world," has remained remarkably constant for at least 35 million years.



David Rowley from the University of Chicago and Brian Currie of Miami University in Ohio report their finding in the Feb. 9 issue of the journal Nature.

Before their last expedition to Tibet, the geologists expected to find evidence that the plateau was rising 35 million years ago, the result of large-scale geologic forces grinding India and Asia against one another. They found instead that the plateau has stood at its current high elevation for at least 35 million years.


The best explanation for Rowley and Currie’s finding: the plateau has widened progressively northward as the Earth’s crust thickened. "This explanation is at odds with a popular theory that has survived since the 1980s," said geological oceanographer Chris Beaumont of Dalhousie University in Halifax, Nova Scotia, Canada.

India and Asia began colliding 50 million years ago as a result of plate tectonics, a large-scale geologic force that slowly moves the continents around the Earth’s surface. The collision took place in an area that once may have resembled the tropical Indonesian island of Sumatra, and it produced the Tibetan Plateau. Today, the plateau stretches for 190,000 square miles at an elevation of approximately 16,000 feet.

"It looks not a whole lot different in places from Kansas," said Rowley, Professor and Chairman of the Geophysical Sciences Department at Chicago. "You could convince yourself that you’re in Kansas, except that you’re breathing a little too hard."

According to a popular theory, both the Earth’s crust--the planet’s outermost solid layer--and the upper portion of the mantle layer that lies below the crust thicken as the continents collide. Then the crust containing the plateau would have "bobbed up," Beaumont explained, while the mantle fell away and sank deep into the Earth.

Rowley and Currie’s research, which is funded by the National Science Foundation, supports the idea that the collision has deformed the crust, but not the mantle. "The bottom of the crust is weak and any attempt to increase the elevation increases the stress on the bottom of the crust, and that crust is now capable of flowing," Rowley explained.

The Nature paper is based on a technique that Rowley and a colleague developed in the late 1990s to determine the elevation of ancient land surfaces. "It turns out that elevation is one of the most sensitive monitors of large-scale processes happening within the Earth," he said.

The technique relies on precise measurement of oxygen isotopes, different varieties of oxygen atoms that are found in rocks formed at various elevations. Water vapor derived from the oceans displays a well-defined isotopic composition that changes in a predictable way as air masses rise, cool and condense with elevation.

As precipitation seeps into the soil, it becomes incorporated into nodules of calcium carbonate, a chemical compound found in rocks around the world. An oxygen isotopic analysis of these nodules reveals the elevation at which they were created, as Rowley and his University of Chicago colleague Ray Pierrehumbert reported in 2001.

The technique is accurate to within approximately 2,000 feet, and it is especially sensitive at elevations of three to five kilometers (9,900 to 16,500 feet). "For asking questions about the height of the Himalayas, the height of Tibet, the height of the Andes, it’s terrific," Rowley said. "But if you go to small mountain ranges or small elevation differences, you’re probably not going to be able to say much with confidence."

Previous efforts aimed at reconstructing the elevation history of mountain ranges depended on comparing tree species that live today at various elevations with the species found in the distant past as indicated by fossilized leaves and pollen. But temperature, rainfall and climate change can influence the distribution of tree species, along with elevation. "It’s not always clear which one is the driver," Rowley said.

As for the Tibetan Plateau, Rowley plans to examine even older rocks to see if he can take a scientific snapshot of the area as it began to rise. From this, scientists will be better able to answer a critical question: how fast does the concentration of heat-generating radioactive elements in thickening crust limit its strength?

"Some people had earlier argued that it took, 10, 20, 30 million years before you got enough heat production to limit that strength," Rowley said, an argument that his data are beginning to support.

"The significance of this research should not be underestimated," Beaumont said. "It demonstrates how a critical observation has the potential to advance our understanding of continental deformation."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>