Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New climate research reveals growing risk of water shortages and flooding in California

08.02.2006


If the world continues to burn greenhouse gases, California may have an increased risk of winter floods and summer water shortages, even within the same year. This scenario may be more severe in future El Niño years.


©2003 American River Conservancy
A waterfall on the North Fork of the American River, in the foothills of California’s eastern Sacramento Valley.


Photo courtesy of Tuolumne River Coalition. The Lower Tuolumne River in California’s Great Central Valley.



New research by Lawrence Livermore National Laboratory (LLNL) scientists shows that global warming is likely to change river flows in ways that may result in both increased flood risk and water shortages. The predictions assume atmospheric carbon dioxide concentration doubles from preindustrial levels.

The amount of water flowing in California’s rivers needs to be just right. Too much brings a risk of flooding; too little causes reservoir levels to drop.


As temperatures warm as a result of carbon emission, more rain than snow falls at higher elevations. For the areas that do receive snow, melt occurs sooner.

The research shows that this well-known scenario – in which global warming causes an increase in wintertime river flows and a reduction in spring and summer flows – is more robust than previously thought.

“It seems unlikely that any changes in precipitation will be large enough to eliminate these problems,” said Philip Duffy, an LLNL physicist and director of the Institute for Research on Climate Change and its Societal Impacts, a University of California Intercampus Research Program. Furthermore, in an El Niño (a naturally occurring climate fluctuation) season, these problems may be more severe.

California’s water infrastructure is very efficient at providing an adequate water supply and minimizing flood risk. The system, however, works well only in a climate that includes large amounts of mountain snow. Melting snow keeps reservoirs full in the late spring and summer, after rain and snowfall have stopped. Snow acts as a natural reservoir, with a volume close to that of manmade reservoirs.

As global warming ensues, more precipitation will be in the form of rain rather than snow. Also, what snow remains will melt earlier in the year. These changes will result in higher river flow rates in California’s major rivers during winter and lower flows during spring and summer, when flows are largely from snowmelt.

“Even if total flows over the whole year are the same, these changes could jeopardize water supplies, because it may not be possible for reservoirs to capture the increased winter flows,” said Edwin Maurer, a professor at Santa Clara University and lead author of the research that appears in the Jan. 27 edition of the journal Geophysical Research Letters. “This problem would be compounded by an increased risk of wintertime flooding resulting from higher river flow rates,” he said.

This would force water managers to reduce reservoir water levels to provide extra space for capturing increased winter flood surges, which would further reduce the overall year’s water supply.

“In an El Niño year, which brings more rain than a typical year, there would be an increase (versus today) in the year-to-year variability in river flow rates, which would make life complicated for people who manage the water supply,” Duffy said.

The researchers simulated only monthly mean river flows, so they can’t quantitatively assess flood risk, which depends on daily-timescale river flows. However, the monthly flows are high enough to indicate that flood risk would be much higher.

“In particular, there will be increased wintertime river flows and lower spring and summer flows whether future precipitation increases or decreases modestly,” Maurer said. “It seems unlikely that the potential problems can be avoided by changes in precipitation.” This finding was published earlier this year by Maurer and Duffy.

The newest paper by Maurer, Duffy, and Seran Gibbard of LLNL’s AX Division investigates effects on California river flows of a hypothetical future-climate El NiÑo. El NiÑo is a naturally occurring climate oscillation that typically produces increased precipitation, river flows and flood risk in California.

The team’s work has some limitations: The researchers assumed that the strength of an El Niño, as measured by departures of sea-surface temperatures from long-term average values, will be the same in the future as today. They did this because climate models don’t agree on how the strength of an El Niño is likely to change.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and to apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>