Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New climate research reveals growing risk of water shortages and flooding in California

08.02.2006


If the world continues to burn greenhouse gases, California may have an increased risk of winter floods and summer water shortages, even within the same year. This scenario may be more severe in future El Niño years.


©2003 American River Conservancy
A waterfall on the North Fork of the American River, in the foothills of California’s eastern Sacramento Valley.


Photo courtesy of Tuolumne River Coalition. The Lower Tuolumne River in California’s Great Central Valley.



New research by Lawrence Livermore National Laboratory (LLNL) scientists shows that global warming is likely to change river flows in ways that may result in both increased flood risk and water shortages. The predictions assume atmospheric carbon dioxide concentration doubles from preindustrial levels.

The amount of water flowing in California’s rivers needs to be just right. Too much brings a risk of flooding; too little causes reservoir levels to drop.


As temperatures warm as a result of carbon emission, more rain than snow falls at higher elevations. For the areas that do receive snow, melt occurs sooner.

The research shows that this well-known scenario – in which global warming causes an increase in wintertime river flows and a reduction in spring and summer flows – is more robust than previously thought.

“It seems unlikely that any changes in precipitation will be large enough to eliminate these problems,” said Philip Duffy, an LLNL physicist and director of the Institute for Research on Climate Change and its Societal Impacts, a University of California Intercampus Research Program. Furthermore, in an El Niño (a naturally occurring climate fluctuation) season, these problems may be more severe.

California’s water infrastructure is very efficient at providing an adequate water supply and minimizing flood risk. The system, however, works well only in a climate that includes large amounts of mountain snow. Melting snow keeps reservoirs full in the late spring and summer, after rain and snowfall have stopped. Snow acts as a natural reservoir, with a volume close to that of manmade reservoirs.

As global warming ensues, more precipitation will be in the form of rain rather than snow. Also, what snow remains will melt earlier in the year. These changes will result in higher river flow rates in California’s major rivers during winter and lower flows during spring and summer, when flows are largely from snowmelt.

“Even if total flows over the whole year are the same, these changes could jeopardize water supplies, because it may not be possible for reservoirs to capture the increased winter flows,” said Edwin Maurer, a professor at Santa Clara University and lead author of the research that appears in the Jan. 27 edition of the journal Geophysical Research Letters. “This problem would be compounded by an increased risk of wintertime flooding resulting from higher river flow rates,” he said.

This would force water managers to reduce reservoir water levels to provide extra space for capturing increased winter flood surges, which would further reduce the overall year’s water supply.

“In an El Niño year, which brings more rain than a typical year, there would be an increase (versus today) in the year-to-year variability in river flow rates, which would make life complicated for people who manage the water supply,” Duffy said.

The researchers simulated only monthly mean river flows, so they can’t quantitatively assess flood risk, which depends on daily-timescale river flows. However, the monthly flows are high enough to indicate that flood risk would be much higher.

“In particular, there will be increased wintertime river flows and lower spring and summer flows whether future precipitation increases or decreases modestly,” Maurer said. “It seems unlikely that the potential problems can be avoided by changes in precipitation.” This finding was published earlier this year by Maurer and Duffy.

The newest paper by Maurer, Duffy, and Seran Gibbard of LLNL’s AX Division investigates effects on California river flows of a hypothetical future-climate El NiÑo. El NiÑo is a naturally occurring climate oscillation that typically produces increased precipitation, river flows and flood risk in California.

The team’s work has some limitations: The researchers assumed that the strength of an El Niño, as measured by departures of sea-surface temperatures from long-term average values, will be the same in the future as today. They did this because climate models don’t agree on how the strength of an El Niño is likely to change.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and to apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>