Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flights reveal intriguing information about ice particles in clouds

08.02.2006


In the clouds above Darwin, Australia, pilots guided by a team of international climate scientists are now one week into a series of carefully orchestrated flights to obtain key in situ data about tropical clouds. Preliminary results obtained from instrumentation on the Proteus --a space-age aircraft equipped with a suite of highly sophisticated sensors -- reveal superior images of ice crystals in high-altitude tropical cirrus clouds.



"These images, combined with data from other aircraft probes, will provide us with a complete data set of detailed information about ice clouds, particularly the numbers of small ice crystals--a parameter that is poorly known and of considerable importance for understanding how clouds affect radiation and climate," said Dr. Greg McFarquhar, one of many U.S. scientists involved in the effort and funded by the Department of Energy’s Atmospheric Radiation Measurement (ARM) Program.

The images were taken by the Cloud Particle Imager, an instrument developed by SPEC Inc. that provides very high resolution images of ice crystals. They were obtained as the Proteus aircraft was climbing through a thin layer of aged cirrus clouds, collecting data to help scientists determine how the properties of ice clouds, including particle size and shape, vary with temperature and altitude. These factors influence the longevity of the cloud, and therefore the amount of radiative energy both reaching and escaping the earth.


The Proteus, funded by the ARM Program, is one of five instrumented research aircraft taking part in the Tropical Warm Pool International Cloud Experiment, or TWP-ICE. Jointly led by the ARM Program and the Australian Bureau of Meteorology, the objectives of the experiment are to collect comprehensive cloud and atmospheric property measurements of both cirrus clouds and deep convective (thunderstorm) clouds--which are the source for much of the cirrus observed in the tropics--in an area approximately 200 km in diameter, centered on Darwin.

Other aircraft participating in the experiment include the Twin Otter, also funded by the ARM Program; the Dimona, sponsored by the Australian Bureau of Meteorology; and the Egrett and Dornier, sponsored by the Natural Environmental Research Council in the United Kingdom. These aircraft fly at altitudes ranging from 50 meters to 17 kilometers, and contain sensitive instruments for measuring various cloud properties, aerosol properties, temperature and humidity.

"Flying the aircraft on simultaneous missions at various elevations is a critical part of the experiment. We’re extremely pleased that in just our third mission, we had all five aircraft up at the same time," said Dr. Jim Mather, the ARM Program’s lead scientist for the experiment. "We were also able to fly several of the aircraft over our ground-based instrumentation. These aircraft data will be very useful for improving the cloud properties derived from the ground-based measurements."

The ARM Program operates a permanent climate research facility in Darwin. In place since April 2002, this site collects continuous measurements of tropical cloud and atmospheric properties. Scientists involved in the experiment installed a comparable set of instruments onboard a self-contained research vessel, provided by Australia’s Commonwealth Scientific Industrial Research Organisation. During the experiment, the ship is located in the Timor Sea, about sixty miles west of Darwin. Measurements taken by the aircraft will be compared to the measurements from these two sites.

The ship also serves as one of five surface sites for launching weather balloons every three hours to obtain a continuous record of atmospheric observations throughout the course of the experiment. One of four surface flux stations, for measuring the exchange of energy between the surface and atmosphere is also located on the ship. These flux measurements are important for understanding the development of convective storms. The combination of surface -based and aircraft data will provide scientists with a detailed look at cirrus structure in the tropics. The experiment concludes on February 13.

Lynne Roeder | EurekAlert!
Further information:
http://www.pnl.gov
http://www.arm.gov

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>