Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

And now December’s weather

19.10.2001


Will our winter be white?
© Photodisc


Meterologists look up for long-range forecasts.

Looking high into the atmosphere now might tell us whether we’re in for a white Christmas. Unusual stratospheric conditions herald changes in winter weather in the Northern Hemisphere up to two months later, say US researchers1.

The finding won’t let your weather forecaster warn you to wrap up warm two months hence, but it may be a valuable addition to meteorologists’ toolkits. "The effect works on average, but it doesn’t happen every time," says one of its discoverers, Mark Baldwin, of Northwest Research Associates in Bellevue, Washington.



It is currently almost impossible to forecast the weather more than a week in advance. "Everyone’s searching for predictive power on the timescale of 10 days to seasons," says Brian Hoskins, who studies atmospheric processes at the University of Reading, UK. "It looks as if, for Europe, the stratosphere could provide a bit of that power over a few weeks."

Baldwin is now working with meteorologists to factor his finding into their computer models of Europe’s climate. "Weather forecasters are aware of the effect, but they’re not yet using it," he says.

Aim high

The stratosphere begins about 10 kilometres above the ground, and extends to a height of about 50 kilometres. Conditions here generally change more slowly than they do lower in the atmosphere, but there are occasional large shifts in the patterns of air movement.

Baldwin and his colleague Timothy Dunkerton analysed daily satellite maps of a stratospheric air current called the Arctic Vortex. This blows westwards, with occasional reversals, around the top of the globe at 200-300 kilometres per hour.

They found a strong relationship between unusual wintertime conditions in the vortex and subsequent unusual weather in the Northern Hemisphere.

The vortex extends into the lower atmosphere, where it tends to trap cold air at the North Pole. If it weakens, the air can drift south, taking cold, snowy and windy conditions to Europe, Asia and North America. An abnormally strong vortex, in contrast, presages unseasonably mild weather.

Changes that are strong enough to cause weather blips "happen a little more than once a year", says Baldwin. He also believes that smaller stratospheric changes might affect the weather. The stratosphere could act like a sort of delayed mirror, reflecting changes in the lower atmosphere back down several months later.

The Arctic Vortex is felt through the Arctic and North Atlantic oscillations. These surface air-pressure features strongly influence the Northern Hemisphere’s winter climate. So predictions made using Baldwin and Dunkerton’s model would work best for western Europe.

The correlation between the stratosphere and the lower atmosphere isn’t in doubt, says Tim Palmer of the European Centre for Medium-Range Weather Forecasts, also in Reading. But he is sceptical as to whether there is a physical link between the two layers. Stratospheric air is so thin, he says, that it’s hard to see how it could influence the denser air below.

It is important to answer the question one way or another, says Palmer, as meteorologists need to know whether to include more stratospheric information in their models and observations.


References
  1. Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science, 294, 581 - 584 , (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-4.html
http://www.nature.com/nsu/

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>