Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

And now December’s weather

19.10.2001


Will our winter be white?
© Photodisc


Meterologists look up for long-range forecasts.

Looking high into the atmosphere now might tell us whether we’re in for a white Christmas. Unusual stratospheric conditions herald changes in winter weather in the Northern Hemisphere up to two months later, say US researchers1.

The finding won’t let your weather forecaster warn you to wrap up warm two months hence, but it may be a valuable addition to meteorologists’ toolkits. "The effect works on average, but it doesn’t happen every time," says one of its discoverers, Mark Baldwin, of Northwest Research Associates in Bellevue, Washington.



It is currently almost impossible to forecast the weather more than a week in advance. "Everyone’s searching for predictive power on the timescale of 10 days to seasons," says Brian Hoskins, who studies atmospheric processes at the University of Reading, UK. "It looks as if, for Europe, the stratosphere could provide a bit of that power over a few weeks."

Baldwin is now working with meteorologists to factor his finding into their computer models of Europe’s climate. "Weather forecasters are aware of the effect, but they’re not yet using it," he says.

Aim high

The stratosphere begins about 10 kilometres above the ground, and extends to a height of about 50 kilometres. Conditions here generally change more slowly than they do lower in the atmosphere, but there are occasional large shifts in the patterns of air movement.

Baldwin and his colleague Timothy Dunkerton analysed daily satellite maps of a stratospheric air current called the Arctic Vortex. This blows westwards, with occasional reversals, around the top of the globe at 200-300 kilometres per hour.

They found a strong relationship between unusual wintertime conditions in the vortex and subsequent unusual weather in the Northern Hemisphere.

The vortex extends into the lower atmosphere, where it tends to trap cold air at the North Pole. If it weakens, the air can drift south, taking cold, snowy and windy conditions to Europe, Asia and North America. An abnormally strong vortex, in contrast, presages unseasonably mild weather.

Changes that are strong enough to cause weather blips "happen a little more than once a year", says Baldwin. He also believes that smaller stratospheric changes might affect the weather. The stratosphere could act like a sort of delayed mirror, reflecting changes in the lower atmosphere back down several months later.

The Arctic Vortex is felt through the Arctic and North Atlantic oscillations. These surface air-pressure features strongly influence the Northern Hemisphere’s winter climate. So predictions made using Baldwin and Dunkerton’s model would work best for western Europe.

The correlation between the stratosphere and the lower atmosphere isn’t in doubt, says Tim Palmer of the European Centre for Medium-Range Weather Forecasts, also in Reading. But he is sceptical as to whether there is a physical link between the two layers. Stratospheric air is so thin, he says, that it’s hard to see how it could influence the denser air below.

It is important to answer the question one way or another, says Palmer, as meteorologists need to know whether to include more stratospheric information in their models and observations.


References
  1. Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science, 294, 581 - 584 , (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-4.html
http://www.nature.com/nsu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>