Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside rocks, implications for finding life on Mars

01.02.2006


UCLA paleobiologist J. William Schopf and colleagues have produced 3-D images of ancient fossils -- 650 million to 850 million years old -- preserved in rocks, an achievement that has never been done before.



If a future space mission to Mars brings rocks back to Earth, Schopf said the techniques he has used, called confocal laser scanning microscopy and Raman spectroscopy, could enable scientists to look at microscopic fossils inside the rocks to search for signs of life, such as organic cell walls. These techniques would not destroy the rocks.

"It’s astounding to see an organically preserved, microscopic fossil inside a rock and see these microscopic fossils in three dimensions," said Schopf, who is also a geologist, microbiologist and organic geochemist. "It’s very difficult to get any insight about the biochemistry of organisms that lived nearly a billion years ago, and this (confocal microscopy and Raman spectroscopy) gives it to you. You see the cells in the confocal microscopy, and the Raman spectroscopy gives you the chemistry.


"We can look underneath the fossil, see it from the top, from the sides, and rotate it around; we couldn’t do that with any other technique, but now we can, because of confocal laser scanning microscopy. In addition, even though the fossils are exceedingly tiny, the images are sharp and crisp. So, we can see how the fossils have degraded over millions of years, and learn what are real biological features and what has been changed over time."

His research is published in the January issue of the journal Astrobiology, in which he reports confocal microscopy results of the ancient fossils. (He published ancient Raman spectroscopy 3-D images of ancient fossils in 2005 in the journal Geobiology.)

Since his first year as a Harvard graduate student in the 1960s, Schopf had the goal of conducting chemical analysis of an individual microscopic fossil inside a rock, but had no technique to do so, until now.

"I have wanted to do this for 40 years, but there wasn’t any way to do so before," said Schopf, the first scientist to use confocal microscopy to study fossils embedded in such ancient rocks. He is director of UCLA’s Institute of Geophysics and Planetary Physics Center for the Study of Evolution and the Origin of Life.

Raman spectroscopy, a technique used primarily by chemists, allows you to see the molecular and chemical structure of ancient microorganisms in three dimensions, revealing what the fossils are made of without destroying the samples. Raman spectroscopy can help prove whether fossils are biological, Schopf said. This technique involves a laser from a microscope focused on a sample; most of the laser light is scattered, but a small part gets absorbed by the fossil.

Schopf is the first scientist to use this technique to analyze ancient microscopic fossils. He discovered that the composition of the fossils changed; nitrogen, oxygen and sulfur were removed, leaving carbon and hydrogen.

Confocal microscopy uses a focused laser beam to make the organic walls of the fossils fluoresce, allowing them to be viewed in three dimensions. The technique, first used by biologists to study the inner workings of living cells, is new to geology.

The ancient microorganisms are "pond scum," among the earliest life, much too small to be seen with the naked eye.

Schopf’s UCLA co-authors include geology graduate students Abhishek Tripathi and Andrew Czaja, and senior scientist Anatoliy Kudryavtsev. The research is funded by NASA.

Schopf is editor of "Earth’s Earliest Biosphere" and "The Proterozoic Biosphere: A Multidisciplinary Study," companion books that provide the most comprehensive knowledge of more than 4 billion years of the earth’s history, from the formation of the solar system 4.6 billion years ago to events half a billion years ago.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>