Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside rocks, implications for finding life on Mars

01.02.2006


UCLA paleobiologist J. William Schopf and colleagues have produced 3-D images of ancient fossils -- 650 million to 850 million years old -- preserved in rocks, an achievement that has never been done before.



If a future space mission to Mars brings rocks back to Earth, Schopf said the techniques he has used, called confocal laser scanning microscopy and Raman spectroscopy, could enable scientists to look at microscopic fossils inside the rocks to search for signs of life, such as organic cell walls. These techniques would not destroy the rocks.

"It’s astounding to see an organically preserved, microscopic fossil inside a rock and see these microscopic fossils in three dimensions," said Schopf, who is also a geologist, microbiologist and organic geochemist. "It’s very difficult to get any insight about the biochemistry of organisms that lived nearly a billion years ago, and this (confocal microscopy and Raman spectroscopy) gives it to you. You see the cells in the confocal microscopy, and the Raman spectroscopy gives you the chemistry.


"We can look underneath the fossil, see it from the top, from the sides, and rotate it around; we couldn’t do that with any other technique, but now we can, because of confocal laser scanning microscopy. In addition, even though the fossils are exceedingly tiny, the images are sharp and crisp. So, we can see how the fossils have degraded over millions of years, and learn what are real biological features and what has been changed over time."

His research is published in the January issue of the journal Astrobiology, in which he reports confocal microscopy results of the ancient fossils. (He published ancient Raman spectroscopy 3-D images of ancient fossils in 2005 in the journal Geobiology.)

Since his first year as a Harvard graduate student in the 1960s, Schopf had the goal of conducting chemical analysis of an individual microscopic fossil inside a rock, but had no technique to do so, until now.

"I have wanted to do this for 40 years, but there wasn’t any way to do so before," said Schopf, the first scientist to use confocal microscopy to study fossils embedded in such ancient rocks. He is director of UCLA’s Institute of Geophysics and Planetary Physics Center for the Study of Evolution and the Origin of Life.

Raman spectroscopy, a technique used primarily by chemists, allows you to see the molecular and chemical structure of ancient microorganisms in three dimensions, revealing what the fossils are made of without destroying the samples. Raman spectroscopy can help prove whether fossils are biological, Schopf said. This technique involves a laser from a microscope focused on a sample; most of the laser light is scattered, but a small part gets absorbed by the fossil.

Schopf is the first scientist to use this technique to analyze ancient microscopic fossils. He discovered that the composition of the fossils changed; nitrogen, oxygen and sulfur were removed, leaving carbon and hydrogen.

Confocal microscopy uses a focused laser beam to make the organic walls of the fossils fluoresce, allowing them to be viewed in three dimensions. The technique, first used by biologists to study the inner workings of living cells, is new to geology.

The ancient microorganisms are "pond scum," among the earliest life, much too small to be seen with the naked eye.

Schopf’s UCLA co-authors include geology graduate students Abhishek Tripathi and Andrew Czaja, and senior scientist Anatoliy Kudryavtsev. The research is funded by NASA.

Schopf is editor of "Earth’s Earliest Biosphere" and "The Proterozoic Biosphere: A Multidisciplinary Study," companion books that provide the most comprehensive knowledge of more than 4 billion years of the earth’s history, from the formation of the solar system 4.6 billion years ago to events half a billion years ago.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>