Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock mystery of layer encircling the Earth’s core

31.01.2006


University of Minnesota associate professor of chemical engineering Renata Wentzcovitch and her team of researchers have confirmed the properties of a mineral (post-perovskite) that may form near the Earth’s core in a layer called the D’’ region. The work offers new insight for interpreting properties of this region. The D’’ (Dee double prime) layer surrounds Earth’s core and is between 0 and 186 miles thick. It is at the interface between two chemically distinct regions, the rocky mantle and the metallic core. The article, "MgSiO3 post-perovskite at D’’ conditions," was published on Jan. 17 in Proceedings of the National Academy of Science.

The research "tells us how to better model Earth’s internal processes," said Wentzcovitch. "Proper geodynamical modeling of the Earth is necessary to get a better grasp of the dynamics of the surface. You can’t fully understand Earth’s surface motion without understanding how it moves inside. What’s unbelievable is how well we can model Earth on a big scale. At this scale, small details don’t matter."

In 2004, Japanese researchers at the Tokyo Institute of Technology found that high temperatures and pressures transform perovskite, the major mineral in Earth’s mantle, into a new mineral called post-perovskite. Wentzcovitch’s group contributed to this discovery by determining the structure of post-perovskite and by calculating the pressure and temperature conditions for its existence. They matched the conditions in the D’’ layer.



In the current work, Wentzcovitch and colleagues demonstrate that the seismic properties of post-perovskite are much like the previously inexplicable properties found in the D’’ layer. This is the most convincing evidence that post-perovskite is in the D’’ layer and produces its strange seismic properties.

As the Earth cools, D’’ becomes thicker. Its thickness is related to Earth’s age and its aging processes. The discovery of post-perovskite in the D’’ layer will also help us understand how the Earth has evolved, Wenttzcovitch said.

Mark Cassutt | EurekAlert!
Further information:
http://www.pnas.org/content/vol103/issue3/#GEOPHYSICS
http://www.umn.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>