Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Converging Satellites Unlock Hurricane Lili’s Sudden Demise

31.01.2006


Using a fleet of NASA and other satellites as well as aircraft and other observations, scientists were able to unlock the secret of Hurricane Lili’s unexpected, rapid weakening as she churned toward a Louisiana landfall in 2002. The data from multiple satellites enabled researchers to see dry air move into the storm’s low levels, partially explaining why Lili weakened rapidly.


Hurricane Lili was a Category 1 hurricane, and was centered over Louisiana on Oct. 3, 2002. This image was taken by the Moderate Imaging Spectroradiometer (MODIS) instrument, aboard NASA’s Terra satellite. At this time, Lili had sustained winds of 92 mph near the center. On October 4, Lili was absorbed by an extratropical low while moving northeastward near the Tennessee/Arkansas border. Click image to enlarge. Credit NASA/GSFC/ MODIS Rapid Response



This study focuses on the rapid weakening of Hurricane Lili over the Gulf of Mexico beginning early on Oct. 3, 2002. During this time span, Hurricane Lili rapidly weakened from a category 4 to a category 1 storm, with its maximum sustained winds decreasing by 45 knots (51.8 mph) in the 13-hour period, until she made landfall in Louisiana. Operational computer models failed to predict this rapid weakening, which is not well-understood.

The study is being presented at the 86th Annual Meeting of the American Meteorological Society in Atlanta, Ga., during the week of Jan. 30. It was conducted by researchers from Mississippi State University (MSU), Mississippi State, Miss., and the National Center for Atmospheric Research (NCAR), Boulder, Colo.


"Because a polar-orbiting satellite can only obtain regional observations once per day, the ability to combine observations from multiple satellites over the data-sparse ocean is a key to understanding tropical cyclone intensity change," says Dr. Pat Fitzpatrick, the principal investigator from MSU.

In order to dissect this complex puzzle, scientists turned to data from NASA’s Terra, Aqua, QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) satellites, as well as data from the National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) aboard Geostationary Operational Environmental Satellite (GOES). They also looked at data from sensors called "dropsondes" that were dropped from hurricane hunter airplanes while flying over Hurricane Lili. Those dropsondes provided temperature, humidity and wind data.

The different satellites provided a variety of data to look at the hurricane’s components. QuikSCAT provided surface winds; Aqua provided high-resolution temperature and moisture profile data; and GOES-8 supplied upper-level winds. Sea Surface Temperature data was also measured from Aqua, Terra, TRMM and AVHRR. Standard weather observations were also incorporated, including maritime surface data from the National Data Buoy Center.

All of these different components were fed into an NCAR computer model called MM5 that re-creates atmospheric and oceanic conditions in four dimensions (height, width, area and time). The data was combined using a "Four-Dimensional Variational Analysis" (4DVAR) system. The MM5 computer model and 4DVAR system, developed by NCAR scientists, essentially re-created the conditions when Hurricane Lili weakened, so scientists could better understand the cause of the drop in strength. The model showed that low-level drier air, not observed in the conventional data, moved into the west side of Lili, at 00 Universal Time on Thursday, Oct. 3, 2002, (Wednesday, Oct. 2, at 8:00 p.m. ET), partially explaining the storm’s weakening.

That dry air created an "open eyewall" which is basically a break up in the powerful thunderstorms that circle the open air center (eye) of the hurricane. Once the eyewall starts to break down, the storm weakens quickly.

The computer model also showed that the GOES upper-level wind data and QuikSCAT satellite wind information can improve hurricane track forecasts. "These satellites, through the 4DVAR technique, improved the inner-core wind structure and also defined the steering currents better," Fitzpatrick said. When this additional wind data from those two satellites was input, the computer model was also able to better re-create Hurricane Lili’s track at landfall.

A paper on this subject has been submitted for review to Monthly Weather Review on the 4DVAR experiments, titled "The Impact of Multi-satellite Data on the Initialization and Simulation of Hurricane Lili’s (2002) Rapid Weakening Phase." The scientists involved in this project are Xiaoyan Zhang and Qingnong Xiao, of the NCAR; and Pat Fitzpatrick, Nam Tran, Yee Lau, Sachin Bhates, and Valentine Anantharaj of MSU.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/ams_lili.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>