Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite portrait of global plant growth will aid climate research

30.01.2006


An ambitious ESA project to chart ten years in the life of the Earth’s vegetation has reached a midway point, with participants and end-users having met to review progress so far. Harnessing many terabytes of satellite data, the GLOBCARBON project is intended to hone the accuracy of climate change forecasting.



GLOBCARBON involves the development of a service to generate fully calibrated estimates of land products based on a variety of Earth Observation data, suitable for assimilation into sophisticated software simulations of the planet created by the global carbon modelling community.

The service is focused on the generation of various global estimates of aspects of terrestrial vegetation: the number, location and area of fire-affected land, known as Burnt Area Estimates (BAE), the area of green leaf exposed to incoming sunlight for photosynthesis, known as Leaf Area Index (LAI), the sunlight actually absorbed for photosynthesis, known as the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and the Vegetation Growth Cycle (VGC).


To obtain these products, GLOBCARBON blends data from a total of five European satellite sensors: the VEGETATION instruments on SPOT-4 and SPOT-5, the Along Track Scanning Radiometer-2 (ATSR-2) on ERS-2, plus the Advanced Along Track Radiometer (AATSR) and Medium Resolution Imaging Spectrometer (MERIS) on Envisat.

At a 17 January GLOBCARBON progress meeting that took place at ESRIN, ESA’s European Centre for Earth Observation, project partners and end-users heard that products for six complete years are now available, covering the whole of 1998 to 2003. A follow-on phase is planned to cover up to the end of 2007.

"GLOBCARBON is a multi-sensor, multi-year global service, and as such has been very challenging in scope," stated Geert Borstlap of VITO, the Belgium-based organisation leading the contract for ESA. "In processing terms we had about 45 terabytes of input data and 18 terabytes of output data, and within the process generated about one petabyte of intermediate data. We developed the necessary software and had about 25 computers and 25 terabytes of disks continuously running for one year from start to finish."

The processing algorithms used to render raw satellite data into final products have come from a number of authoritative sources: the International Geosphere-Biosphere Programme (IGBP); the European Commission’s Joint Research Centre in Ispra, Italy (EC-JRC); the University of Toronto; the Centre d’Etudes Spatiales de la Biosphère (CESBIO) in Toulouse and the Laboratoire des Sciences du Climat et l’Environnement (LSCE) in Gif-Sur-Yvette as well as ESA’s ESRIN centre in Frascati, Italy. Dr Stephen Plummer of IGBP oversees algorithm selection and interfaces with product users.

GLOBCARBON end users – charged with assessing and validating the products – comprise the Global Carbon Project (GCP) hosted in Canberra, Australia, the UK Centre for Terrestrial Carbon Dynamics (CTCD) in Sheffield, the Max Planck Institute for Meteorology (MPI-M) in Berlin, Germany and the Potsdam Institute for Climate Impact Research (PIK).

GLOBCARBON LAI results are also being checked with LAI products from CYCLOPES, another satellite-based service being developed through a project called Geoland, part of the European Commission’s initial contribution to Global Monitoring to Environment and Security (GMES), a joint initiative with ESA to develop an independent environmental monitoring capability for Europe.

Researchers seeking to follow the carbon

Carbon’s unique compound-forming properties underpin all life on Earth. They also mean this many-formed element is abundant not only in the biosphere but also in the geosphere, ocean and atmosphere, undergoing exchange – often rapidly – between them.

This movement of carbon through the different components of the Earth system is called the carbon cycle. Human activities have led the cycle to move out of balance, as fossil fuel burning and land clearances lead to increased atmospheric carbon levels driving global warming. This development may also have knock-on effects on the carbon cycle itself, in the uncertain responses of oceanic phytoplankton and land vegetation respond to rising temperatures.

Researchers have developed complex software models of carbon cycle processes to try and predict future changes, providing vital input for the Intergovernmental Panel on Climate Change (IPCC) and related groups assessing the potential impact of climate change. However any model is only as good as input data, and relevant data is lacking for certain aspects of the carbon cycle – especially land vegetation.

"GLOBCARBON is definitely a useful product for the carbon modelling community," explained Dr Tristan Quaife of CTCD. "Information about LAI is important because it gives us an ability to constrain the amount of green biomass available for photosynthesis and gas exchange through evapo-transpiration.

"These are probably the two key processes controlling carbon exchange with the atmosphere, so with better knowledge of LAI and its dynamics we have a better chance of estimating the primary productivity of an ecosystem.

"It is a similar story with vegetation growth cycle – or phenology. Improved information allows us to improve our knowledge of the length of time that leaves are out, influencing vegetation’s ability to assimilate carbon from the atmosphere. That isn’t well modelled at the moment because we don’t fully understand what it is that makes a plant sprout its leaves, and consequently models aren’t so accurate.

"Burnt area estimates are also useful because we don’t fully understand global fire occurrence patterns either. We can map active fires from space, but what we are seeing there is only the part of the Earth that is combusted at that moment. To get a complete picture we need to record the full area burnt, which is useful for determining how much biomass has been removed from the Earth’s surface and consequently how much carbon has been liberated into the atmosphere."

ESA serving global change research

GLOBCARBON is being supported through the ESA’s Data User Element of the Earth Observation Envelope Programme-2 (EOEP-2), and is one of a family of projects developing satellite-based products and services that support investigations of global and climate change within different elements of the Earth system.

These include GLOBWETLAND which is developing means of monitoring wetland areas; GLOBCOVER which aims to create the sharpest-ever global land cover map; GLOBAEROSOL to chart the distribution of atmospheric aerosols playing a role in climate forcing; GLOBCOLOUR which users ocean colour data to estimate marine photosynthesis; and GLOBICE to acquire information on sea ice dynamics.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMBM3NZCIE_planet_0.html

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>