Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite portrait of global plant growth will aid climate research

30.01.2006


An ambitious ESA project to chart ten years in the life of the Earth’s vegetation has reached a midway point, with participants and end-users having met to review progress so far. Harnessing many terabytes of satellite data, the GLOBCARBON project is intended to hone the accuracy of climate change forecasting.



GLOBCARBON involves the development of a service to generate fully calibrated estimates of land products based on a variety of Earth Observation data, suitable for assimilation into sophisticated software simulations of the planet created by the global carbon modelling community.

The service is focused on the generation of various global estimates of aspects of terrestrial vegetation: the number, location and area of fire-affected land, known as Burnt Area Estimates (BAE), the area of green leaf exposed to incoming sunlight for photosynthesis, known as Leaf Area Index (LAI), the sunlight actually absorbed for photosynthesis, known as the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and the Vegetation Growth Cycle (VGC).


To obtain these products, GLOBCARBON blends data from a total of five European satellite sensors: the VEGETATION instruments on SPOT-4 and SPOT-5, the Along Track Scanning Radiometer-2 (ATSR-2) on ERS-2, plus the Advanced Along Track Radiometer (AATSR) and Medium Resolution Imaging Spectrometer (MERIS) on Envisat.

At a 17 January GLOBCARBON progress meeting that took place at ESRIN, ESA’s European Centre for Earth Observation, project partners and end-users heard that products for six complete years are now available, covering the whole of 1998 to 2003. A follow-on phase is planned to cover up to the end of 2007.

"GLOBCARBON is a multi-sensor, multi-year global service, and as such has been very challenging in scope," stated Geert Borstlap of VITO, the Belgium-based organisation leading the contract for ESA. "In processing terms we had about 45 terabytes of input data and 18 terabytes of output data, and within the process generated about one petabyte of intermediate data. We developed the necessary software and had about 25 computers and 25 terabytes of disks continuously running for one year from start to finish."

The processing algorithms used to render raw satellite data into final products have come from a number of authoritative sources: the International Geosphere-Biosphere Programme (IGBP); the European Commission’s Joint Research Centre in Ispra, Italy (EC-JRC); the University of Toronto; the Centre d’Etudes Spatiales de la Biosphère (CESBIO) in Toulouse and the Laboratoire des Sciences du Climat et l’Environnement (LSCE) in Gif-Sur-Yvette as well as ESA’s ESRIN centre in Frascati, Italy. Dr Stephen Plummer of IGBP oversees algorithm selection and interfaces with product users.

GLOBCARBON end users – charged with assessing and validating the products – comprise the Global Carbon Project (GCP) hosted in Canberra, Australia, the UK Centre for Terrestrial Carbon Dynamics (CTCD) in Sheffield, the Max Planck Institute for Meteorology (MPI-M) in Berlin, Germany and the Potsdam Institute for Climate Impact Research (PIK).

GLOBCARBON LAI results are also being checked with LAI products from CYCLOPES, another satellite-based service being developed through a project called Geoland, part of the European Commission’s initial contribution to Global Monitoring to Environment and Security (GMES), a joint initiative with ESA to develop an independent environmental monitoring capability for Europe.

Researchers seeking to follow the carbon

Carbon’s unique compound-forming properties underpin all life on Earth. They also mean this many-formed element is abundant not only in the biosphere but also in the geosphere, ocean and atmosphere, undergoing exchange – often rapidly – between them.

This movement of carbon through the different components of the Earth system is called the carbon cycle. Human activities have led the cycle to move out of balance, as fossil fuel burning and land clearances lead to increased atmospheric carbon levels driving global warming. This development may also have knock-on effects on the carbon cycle itself, in the uncertain responses of oceanic phytoplankton and land vegetation respond to rising temperatures.

Researchers have developed complex software models of carbon cycle processes to try and predict future changes, providing vital input for the Intergovernmental Panel on Climate Change (IPCC) and related groups assessing the potential impact of climate change. However any model is only as good as input data, and relevant data is lacking for certain aspects of the carbon cycle – especially land vegetation.

"GLOBCARBON is definitely a useful product for the carbon modelling community," explained Dr Tristan Quaife of CTCD. "Information about LAI is important because it gives us an ability to constrain the amount of green biomass available for photosynthesis and gas exchange through evapo-transpiration.

"These are probably the two key processes controlling carbon exchange with the atmosphere, so with better knowledge of LAI and its dynamics we have a better chance of estimating the primary productivity of an ecosystem.

"It is a similar story with vegetation growth cycle – or phenology. Improved information allows us to improve our knowledge of the length of time that leaves are out, influencing vegetation’s ability to assimilate carbon from the atmosphere. That isn’t well modelled at the moment because we don’t fully understand what it is that makes a plant sprout its leaves, and consequently models aren’t so accurate.

"Burnt area estimates are also useful because we don’t fully understand global fire occurrence patterns either. We can map active fires from space, but what we are seeing there is only the part of the Earth that is combusted at that moment. To get a complete picture we need to record the full area burnt, which is useful for determining how much biomass has been removed from the Earth’s surface and consequently how much carbon has been liberated into the atmosphere."

ESA serving global change research

GLOBCARBON is being supported through the ESA’s Data User Element of the Earth Observation Envelope Programme-2 (EOEP-2), and is one of a family of projects developing satellite-based products and services that support investigations of global and climate change within different elements of the Earth system.

These include GLOBWETLAND which is developing means of monitoring wetland areas; GLOBCOVER which aims to create the sharpest-ever global land cover map; GLOBAEROSOL to chart the distribution of atmospheric aerosols playing a role in climate forcing; GLOBCOLOUR which users ocean colour data to estimate marine photosynthesis; and GLOBICE to acquire information on sea ice dynamics.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMBM3NZCIE_planet_0.html

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>