Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two new lakes found beneath Antarctic ice sheet

26.01.2006


Ancient water bodies may contain ecosystems adapted to life beneath more than two miles of ice



The Earth Institute at Columbia University--Lying beneath more than two miles of Antarctic ice, Lake Vostok may be the best-known and largest subglacial lake in the world, but it is not alone down there. Scientists have identified more than 145 other lakes trapped under the ice. Until now, however, none have approached Vostok’s size or depth.

In the February 2006 issue of Geophysical Review Letters, scientists from the Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, describe for the first time the size, depth and origin of Vostok’s two largest neighbors. The two ice-bound lakes are referred to as 90ºE and Sovetskaya for the longitude of one and the Russian research station coincidentally built above the other. The scientists’ findings also indicate that, as suspected with Lake Vostok, an exotic ecosystem may still be thriving in the icy waters 35 million years after being sealed off from the surface.


Geophysicists Robin Bell and Michael Studinger of Lamont-Doherty combined data from ice-penetrating radar, gravity surveys, satellite images, laser altimetry and records of a Soviet Antarctic Expedition that unknowingly traversed the lakes in 1958-1959. The shorelines of the lakes appeared in satellite images of the region as perturbations in the surface of the East Antarctic ice sheet. In addition, because the ice is effectively floating on the surface of the lakes, the ice sheet exhibits slight depressions over the lakes that appear in radar and laser elevations.

Bell and Studinger, along with colleagues from the University of New Hampshire and NASA, report that the 90ºE Lake has a surface area of 2,000km2, which is about the size of Rhode Island, and is second only to Lake Vostok’s 14,000km2 surface area. Sovetskaya Lake was calculated to be about 1,600 km2. Both are sealed beneath more than two miles of ice.

The lake depths, estimated to be at least 900 meters, were calculated from gravity data taken during aerial surveys in 2000 and 2001. Because gravitational force is directly related to mass, a decrease in gravitational pull over the ice sheet corresponds to a decrease in mass beneath the ice. "Over the lakes, the pull of gravity is much weaker, so we know there must be a big hole down there," said Bell.

Their depth, along with the fact that they are parallel to each other and Lake Vostok, indicate that the lake system is tectonic in origin, the authors conclude.

Shallow lakes scooped out by glaciers or a meteorite impact can quickly fill with sediment, and thus are short lived. Lakes created by faulted blocks of the Earth’s crust, however, are deeper and don’t fill in as rapidly. Many of the smaller sub-glacial lakes scientists have identified so far are believed to be shallow "ephemeral" lakes that were suddenly sealed off by the ice.

The combination of heat from below and a thick layer of insulating ice above keeps the water temperature at the top of 90ºE and Sovetskaya at a balmy –2 degrees Celsius, despite temperatures on the surface that can drop to –80 degrees Celsius in winter. Since the lakes are bounded by faults, Bell said it is likely the lakes receive flows of nutrients that could support unique ecosystems. Moreover, laser mapping of the ice sheet surface by NASA’s Ice Cloud and Land Elevation Satellite (ICESat) revealed that this water-ice boundary, or ceiling, is tilted.

"Since the surface is tilted, we know that the ice sheet changes thickness over the lake and that will drive circulation in the lake," said Bell. "This will provide mixing and distribute whatever nutrients are in the lake, which is an important component of subglacial ecosystems."

This, along with the tectonic origin of the lakes, supports the idea that despite climate changes on the surface over the last 10 million to 35 million years, the volume of the lakes have remained remarkably constant, providing a stable, if inhospitable, environment that may harbor an ancient and alien ecosystem adapted to life beneath the ice sheet. However, just how, when or even whether scientists will risk the possibility of contaminating the lakes to confirm their suspicions remains the subject of an ongoing international debate.

The study was supported by the Lamont-Doherty Earth Observatory, the Palisades Geophysical Institute, NASA, and the National Science Foundation.

Ken Kostel | EurekAlert!
Further information:
http://www.ei.columbia.edu
http://www.earth.columbia.edu
http://www.ldeo.columbia.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>