Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA to Fly Into ’Portal’ to the Stratosphere

25.01.2006


NASA scientists are leading an airborne field experiment to a warm tropical locale to take a close look at a largely unexplored region of the chilly upper atmosphere. This area is critical to the recovery of the ozone layer and predicting future climate change. This very cold region far above the Earth’s equator (54,000 feet), a few miles higher than commercial aircraft can fly, is the main pathway where the lower part of the atmosphere, known as the troposphere, flows into the stratosphere.



High-altitude flights by a NASA aircraft based in Costa Rica during the month-long field campaign are being choreographed with the orbits of Aura, NASA’s latest Earth-observing spacecraft. Launched in 2004, Aura helps scientists understand how atmospheric composition affects and responds to Earth’s changing climate. The satellite helps to reveal the processes that connect local and global air quality, and also tracks the extent the Earth’s protective ozone layer is recovering.

In concert with global observations from Aura, the Costa Rica Aura Validation Experiment (CR-AVE) is tackling some of the remaining puzzles about how ozone-destroying chemicals get into the stratosphere and how high-altitude clouds affect the flow of one of the most powerful greenhouse gases -- water -- into this critical region. The project is an integrated science and satellite validation campaign sponsored by NASA’s Science Mission Directorate. Paul Newman, Goddard Space Flight Center, Greenbelt, Md., and Eric Jensen, Ames Research Center, Moffett Field, Calif., orchestrate the field activities as CR-AVE project scientists.


NASA’s WB-57F high-altitude aircraft is carrying a payload of 29 scientific instruments up to heights of 60,000 feet (17 kilometers). The Johnson Space Center aircraft will capture extensive, best-ever glimpses into this region’s chemical brew, the ice crystals inside high-altitude clouds, and a rarely observed class of hard-to-see clouds that may play an important role in climate change. Flights began Jan. 14 from San Jose, Costa Rica, and continue through Feb. 9.

Costa Rica provides NASA scientists an ideal base of operations to sample this unique zone of the atmosphere. Usually Earth’s two major atmospheric regions -- the troposphere and the stratosphere -- only rarely mix across a barrier called the tropopause. But near the equator there is a steady flow of air into the stratosphere. The tropopause is the portal through which chemicals and water from the lower atmosphere are pumped higher into the atmosphere.

There is a lot going on in this hard-to-reach region that scientists want to know more about. "The tropical tropopause layer is an important transition zone in the atmosphere, and we don’t understand the physics of how it works well enough," says Goddard’s Paul Newman.

Knowing in detail how the air moves and how fast it moves is an important gap in scientist’s ability to predict when the ozone layer will recover, according to Newman. "For example, there is more bromine, a key chemical involved in ozone destruction, in the stratosphere than we estimate should be there, based on our knowledge of how this part of the atmosphere circulates. That’s a problem we need to solve if we’re going to improve our predictions."

Another major player in both ozone recovery and future climate change -- water -- will also be closely studied in this region during the campaign. The small amount of water that does manage to get into the stratosphere forms icy clouds over the poles, and ozone destruction is amplified by these clouds. Exactly how water gets into the stratosphere is still a major scientific question.

Water in the form of ice crystals in high-altitude clouds also influences how much heat the atmosphere keeps from sunlight. Huge anvil cirrus clouds can cover up to 20 percent of the tropics and play a large role in the Earth’s overall heat balance. "But the size and shape of the ice crystals in these clouds have not been very well sampled, and if we don’t know that, we can’t estimate how much sunlight these clouds reflect," says Ames’ Eric Jensen. The WB-57F will repeatedly fly through these clouds to gather this information, which is much sought-after by scientists using computer models to estimate global climate change.

The NASA aircraft will also be hunting for an elusive type of cloud called "sub-visual cirrus" that forms near the very cold tropical tropopause, much higher than typical cirrus clouds. "These clouds are so high that they have rarely been sampled, and we don’t know very much about how they form," says Jensen. The cloud layers are so thin that they can only be seen edge-on, so it will be up to the aircraft flight crew to spot them during their flights.

Measurements from the NASA aircraft will also prove critical to the scientific value of the Aura satellite. By comparing readings from instruments on the aircraft to those on Aura, scientists can be certain that Aura’s data is as accurate as possible. NASA satellites provide a wealth of global observations every day that are essential to tackling many scientific questions.

"Science is a game of numbers," says Newman, "and your numbers get more accurate if you can compare readings from two independent instruments. This ’validation’ of the Aura measurements is critical to NASA’s mission to obtain high-quality observations of the Earth to advance science."

Also participating in the experiment are scientists from the National Oceanographic and Atmospheric Administration’s Earth System Research Laboratory, Harvard University, the National Center for Atmospheric Research, the University of Wisconsin, and the University of Denver. The Costa Rican National Center of High Technology (CENAT) is providing high-altitude weather balloon observations and weather forecasting support.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/crave.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>