Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA to Fly Into ’Portal’ to the Stratosphere

25.01.2006


NASA scientists are leading an airborne field experiment to a warm tropical locale to take a close look at a largely unexplored region of the chilly upper atmosphere. This area is critical to the recovery of the ozone layer and predicting future climate change. This very cold region far above the Earth’s equator (54,000 feet), a few miles higher than commercial aircraft can fly, is the main pathway where the lower part of the atmosphere, known as the troposphere, flows into the stratosphere.



High-altitude flights by a NASA aircraft based in Costa Rica during the month-long field campaign are being choreographed with the orbits of Aura, NASA’s latest Earth-observing spacecraft. Launched in 2004, Aura helps scientists understand how atmospheric composition affects and responds to Earth’s changing climate. The satellite helps to reveal the processes that connect local and global air quality, and also tracks the extent the Earth’s protective ozone layer is recovering.

In concert with global observations from Aura, the Costa Rica Aura Validation Experiment (CR-AVE) is tackling some of the remaining puzzles about how ozone-destroying chemicals get into the stratosphere and how high-altitude clouds affect the flow of one of the most powerful greenhouse gases -- water -- into this critical region. The project is an integrated science and satellite validation campaign sponsored by NASA’s Science Mission Directorate. Paul Newman, Goddard Space Flight Center, Greenbelt, Md., and Eric Jensen, Ames Research Center, Moffett Field, Calif., orchestrate the field activities as CR-AVE project scientists.


NASA’s WB-57F high-altitude aircraft is carrying a payload of 29 scientific instruments up to heights of 60,000 feet (17 kilometers). The Johnson Space Center aircraft will capture extensive, best-ever glimpses into this region’s chemical brew, the ice crystals inside high-altitude clouds, and a rarely observed class of hard-to-see clouds that may play an important role in climate change. Flights began Jan. 14 from San Jose, Costa Rica, and continue through Feb. 9.

Costa Rica provides NASA scientists an ideal base of operations to sample this unique zone of the atmosphere. Usually Earth’s two major atmospheric regions -- the troposphere and the stratosphere -- only rarely mix across a barrier called the tropopause. But near the equator there is a steady flow of air into the stratosphere. The tropopause is the portal through which chemicals and water from the lower atmosphere are pumped higher into the atmosphere.

There is a lot going on in this hard-to-reach region that scientists want to know more about. "The tropical tropopause layer is an important transition zone in the atmosphere, and we don’t understand the physics of how it works well enough," says Goddard’s Paul Newman.

Knowing in detail how the air moves and how fast it moves is an important gap in scientist’s ability to predict when the ozone layer will recover, according to Newman. "For example, there is more bromine, a key chemical involved in ozone destruction, in the stratosphere than we estimate should be there, based on our knowledge of how this part of the atmosphere circulates. That’s a problem we need to solve if we’re going to improve our predictions."

Another major player in both ozone recovery and future climate change -- water -- will also be closely studied in this region during the campaign. The small amount of water that does manage to get into the stratosphere forms icy clouds over the poles, and ozone destruction is amplified by these clouds. Exactly how water gets into the stratosphere is still a major scientific question.

Water in the form of ice crystals in high-altitude clouds also influences how much heat the atmosphere keeps from sunlight. Huge anvil cirrus clouds can cover up to 20 percent of the tropics and play a large role in the Earth’s overall heat balance. "But the size and shape of the ice crystals in these clouds have not been very well sampled, and if we don’t know that, we can’t estimate how much sunlight these clouds reflect," says Ames’ Eric Jensen. The WB-57F will repeatedly fly through these clouds to gather this information, which is much sought-after by scientists using computer models to estimate global climate change.

The NASA aircraft will also be hunting for an elusive type of cloud called "sub-visual cirrus" that forms near the very cold tropical tropopause, much higher than typical cirrus clouds. "These clouds are so high that they have rarely been sampled, and we don’t know very much about how they form," says Jensen. The cloud layers are so thin that they can only be seen edge-on, so it will be up to the aircraft flight crew to spot them during their flights.

Measurements from the NASA aircraft will also prove critical to the scientific value of the Aura satellite. By comparing readings from instruments on the aircraft to those on Aura, scientists can be certain that Aura’s data is as accurate as possible. NASA satellites provide a wealth of global observations every day that are essential to tackling many scientific questions.

"Science is a game of numbers," says Newman, "and your numbers get more accurate if you can compare readings from two independent instruments. This ’validation’ of the Aura measurements is critical to NASA’s mission to obtain high-quality observations of the Earth to advance science."

Also participating in the experiment are scientists from the National Oceanographic and Atmospheric Administration’s Earth System Research Laboratory, Harvard University, the National Center for Atmospheric Research, the University of Wisconsin, and the University of Denver. The Costa Rican National Center of High Technology (CENAT) is providing high-altitude weather balloon observations and weather forecasting support.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/crave.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>