Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful completion of deep ice coring in the Antarctic

24.01.2006


An international team of scientists and technical staff under the leadership of the Alfred Wegener Institute for Polar and Marine Research has successfully completed the deep ice coring at the Alfred Wegener Institute’s Kohnen Station in Dronning Maud Land, Antarctica. Reaching a depth of 2774 metres, first on-site examinations of the ice core indicate that the ice cored at the deepest 200 metres is very old.

The investigations, carried out as part of the EPICA program (European Program for Ice Coring in Antarctica), were designed to gain detailed information about historic climate. Scientists are expecting the data to enhance the understanding of global climate events significantly. A detailed analysis in home laboratories will generate climate data with a very high temporal resolution in the core’s upper 2400 metres, covering the last glacial cycle. The cores retrieved from greater depths are presumably up to 900,000 years old. Such insights into the distant climate history of the Antarctic facilitate a deeper understanding of the significance of polar regions for global climate events, both in the past and at present.

Deep ice coring projects represent long-term research programs. Exploratory work for EPICA, to determine a suitable drill site in Dronning Maud Land, began in 1996. It included extensive geophysical and glaciological investigations, both from the air and on the ground, in a previously unexplored region of the Antarctic.



After establishment of the drill site, construction of Kohnen summer station commenced in 1999 at 75°S and 0° 4’E, 2900 metres above sea level. During the final construction stages of the station in 2001, establishment of the drill site had already begun. The deep coring started in 2001/2002, and the core was sunk over four coring seasons. Throughout the entire depth, ice cores of remarkable quality could be retrieved.

Field work in the Antarctic creates not only scientific challenges. The operating conditions for people and technical equipment are extreme: during the summer months of December and January, prevailing temperatures at Kohnen Station range from minus 35°C to minus 20°C, and at the beginning of the current field season in November of 2005, temperatures below minus 50°C were recorded.

The EPICA project is carried out by a consortium of research teams from ten European countries (Belgium, Denmark, Germany, Great Britain, France, Italy, the Netherlands, Norway, Sweden and Switzerland). EPICA is coordinated by the European Science Foundation (ESF) and financed through national contributions and EU funds. Currently, the lead management rests with Professor Heinrich Miller of the Alfred Wegener Institute. As early as December 2004, the first deep coring of the project, at Dome Concordia Station located on the inland ice plateau of the Eastern Antarctic, was completed five metres above bedrock at a depth of 3270 metres. Hence, after analysis of the core from Kohnen Station, two data sets will be available for comparison, enabling much better interpretation of the records.

Andreas Wohltmann | alfa
Further information:
http://www.awi-bremerhaven.de/index-e.html

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>