Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile climate monitoring facility to sample skies in Africa

20.01.2006


The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program is placing a new, portable atmospheric laboratory with sophisticated instruments and data systems in Niger, Africa, to gain a better understanding of the potential impacts of Saharan dust on global climate.

Dust from Africa’s Sahara desert--the largest source of dust on the planet--reaches halfway around the globe. Carried by winds and clouds, the dust travels through West African, Mediterranean, and European skies, and across the Atlantic into North America. Unfortunately, Africa is one of the most under-sampled climate regimes in the world, leaving scientists to wonder about its contribution to global climate.

"As a point of origin for atmospheric disturbances that evolve into Atlantic storms, the Sahara is not only a driving force for the environmental conditions in Western Africa, but also for the development of weather systems that can reach the United States," said Dr. Raymond Orbach, Director of DOE’s Office of Science. "Our ability to predict the impact of the Saharan dust on weather and climate is dependent on gathering accurate and long-term data sets for computer models that simulate these effects."



Beginning in January, at a site in Niamey, Niger, the ARM Mobile Facility (AMF) will collect atmospheric data on absorbing aerosols from desert dust in the dry season, and deep convective clouds and large moisture generation during the summer monsoon. Measurements obtained by the AMF will provide information about heating and cooling (known as "radiative feedback") of the Earth’s atmosphere, the interaction of clouds with dust and aerosols, and West African monsoons. This will allow scientists to study possible reasons for the ongoing drought in West Africa and the genesis of tropical waves that may evolve into hurricanes.

Natural phenomena, such as the fine-powder dust found in the skies of Africa, present a particularly difficult challenge to scientists studying how dynamic cloud conditions affect the sun’s incoming and Earth’s outgoing energy and, in the longer term, our climate. As stated by President Bush, "The issue of climate change respects no border. With its potential to impact every corner of the world, climate change is an issue that must be addressed by the world."

Niger is located on the southern border of the Sahara, which covers most of North Africa. Niamey, its capital, is in southwest Niger, and is one of several sites throughout Western Africa involved in an international study known as the African Monsoon Multidisciplinary Analysis, or AMMA. Scientists involved in AMMA are using airplanes, satellites, and instrumented ground stations to collect data for studying the interactions between monsoon dynamics and scale, continental water cycle, aerosols, atmospheric chemistry, food, water, and health. The extended series of measurements from the AMF, combined with those from satellite instrumentation sponsored by the European Union, will provide the first well-sampled, direct measurements of the solar and thermal radiation across the atmosphere.

Scientists sponsored by the ARM Program focus on the goal of reducing uncertainty and improving the representation of clouds and radiative feedback processes in climate models. They accomplish this by analyzing data collected from state-of-the-art remote-sensing instruments and radars situated in three primary climate regimes--high latitudes in Alaska, mid-latitudes at the Southern Great Plains in Oklahoma, and low latitudes in the Tropical Western Pacific. The portability of the AMF now allows scientists to study different climates--like the hot and dusty Sahara--for up to one year.

The AMF consists of two lightweight shelters and a baseline suite of instruments, data communications, and data systems. Its measurement capabilities include standard meteorological instrumentation, a broadband and spectral radiometer suite, and remote sensing instruments. It can also accommodate instruments in addition to, or in place of, the baseline collection. Numerous DOE laboratories are involved in the scientific and operational capabilities of the AMF, including Brookhaven National Laboratory, Los Alamos National Laboratory, and Pacific Northwest National Laboratory.

Data obtained by the AMF during the international AMMA project will enable scientists to study the impact of Saharan dust on cloud properties and atmospheric absorption of radiation and to better quantify the impact of dust on cloud formation, precipitation, storm creation, and cloud dynamics. Ultimately, this information will help to improve model simulations of global climate, as well as increase scientific understanding of the influence of the West African Monsoon on the physical, chemical, and biological environment, both regionally and globally.

Jeff Sherwood | EurekAlert!
Further information:
http://www.doe.gov
http://www.arm.gov

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>