Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient lakes of the Sahara

19.01.2006


The Sahara has not always been the arid, inhospitable place that it is today – it was once a savannah teeming with life, according to researchers at the Universities of Reading and Leicester.



Eight years of studies in the Libyan desert area of Fazzan, now one of the harshest, most inaccessible spots on Earth, have revealed swings in its climate that have caused considerably wetter periods, lasting for thousands of years, when the desert turned to savannah and lakes provided water for people and animals.

This, in turn, has given us vital clues about the history of humans in the area and how these ancient inhabitants coped with climate change as the land began to dry up around them again.


In their article ‘Ancient lakes of the Sahara’, which appears in the January-February issue of American Scientist magazine, Dr Kevin White of the University of Reading and Professor David Mattingly of the University of Leicester explain how they used satellite technology and archaeological evidence to reveal new clues about both the past environment of the Sahara and of human prehistory in the area.

“The climate of the Sahara has been highly variable over the millennia and we have been able to provide much more specific dating of these changes,” said Dr White. “Over the last 10,000 years, there have been two distinct humid phases, separated by an interval of highly variable but generally drying conditions between roughly 8,000 and 7,000 years ago. Another drying trend took place after about 5,000 years ago, leading to today’s parched environment.”

The researchers determined where surface water was once present by using radar images of the desert taken from space. These images showed rivers, lakes and springs now buried below shifting sand dunes. As these bodies dried out thousands of years ago, the resulting mineral deposits cemented the lake sediments together and these hardened layers are detectable by using radar images.

“This information was essential because archaeologists need to focus their efforts near ancient rivers, lakes and springs, where people used to congregate due to their basic need for water,” said Dr White. “We found large quantities of stone tools around the ancient water sources, indicating at least two separate phases of human occupation.”

The earliest humans in the area were Palaeolithic hunter-gatherers, who lived in the Fazzan between about 400,000 and 70,000 years ago. They survived by hunting large and small game in a landscape that was considerably wetter and greener than it is now. A prolonged arid phase from about 70,000 to 12,000 years ago apparently drove humans out of the region, but then the rains returned – along with the people.

Around 5,000 years ago the climate began to dry out again, but this time people adapted by developing an agricultural civilization with towns and villages based around oases. This process culminated with the emergence of the Garamantian society in the first millennium BC.

Professor Mattingly said: “We have been given a completely new view of this elusive and remarkable society. The Garamantes were known to the ancient Romans as a race of desert warriors, but archaeology has shown they had agriculture, cities and a phenomenally advanced system of water extraction that kept their civilisation going for 1,000 years as the land was drying up around them.”

They cultivated a variety of high-grade cereals, such as wheat and barley, and other crops such as date palms, vines, olives, cotton, vegetables and pulses.

As the Saharan climate began to dry out they drew their water from a large subterranean aquifer (an underground bed of rock that yields water) and transported it through a network of tunnels.

“The fact that the Garamantes developed this ingenious irrigation system shows that our ability to apply engineering solutions to deal with climate change is by no means only a modern phenomenon,” said Dr White. “The gradual drying up of springs and dessication of the surrounding landscape must have seemed ominous , but they knew they had to develop sophisticated methods to cope with it.

“But even this remarkably adaptable society – one of the first urban civilisations built in a desert – could not cope forever with a falling water table and intensifying aridity. Sometime around 500AD, the Garamantian society collapsed and their irrigation system fell into disuse.”

Associated with this research, Reading’s School of Human and Environmental Sciences, in collaboration with the Department of Meteorology, are undertaking a major project, linking climate, water and civilization in the Middle East and North Africa, with a £1,240,000 grant from the Leverhulme Trust.

Dr Kevin White | alfa
Further information:
http://www.reading.ac.uk
http://www.americanscientist.org

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>